Efficient Itaconic acid production via protein-protein scaffold introduction between GltA, AcnA, and CadA in recombinant Escherichia coli

被引:10
作者
Tran, Kim-Ngan T. [1 ]
Somasundaram, Sivachandran [1 ]
Eom, Gyeong Tae [2 ,3 ]
Hong, Soon Ho [1 ]
机构
[1] Univ Ulsan, Dept Chem Engn, 93 Daehak Ro, Ulsan 44610, South Korea
[2] KRICT, Res Ctr Biobased Chem, Ulsan, South Korea
[3] Korea Univ Sci & Technol UST, Dept Green Chem & Environm Biotechnol, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Escherichia coli; itaconic acid; metabolic engineering; protein scaffold; SYNTHETIC SCAFFOLDS; DEHYDROGENASE; DECARBOXYLASE; BIOSYNTHESIS; GENE;
D O I
10.1002/btpr.2799
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Itaconic acid, which is a promising organic acid in synthetic polymers and some base-material production, has been produced by Aspergillus terreus fermentation at a high cost. The recombinant Escherichia coli that contained the cadA gene from A. terreus can produce itaconic acid but with low yield. By introducing the protein-protein scaffold between citrate synthesis, aconitase, and cis-aconitase decarboxylase, 5.7 g/L of itaconic acid was produced, which is 3.8-fold higher than that obtained with the strain without scaffold. The optimum pH and temperature for itaconic acid production were 8.5 and 30 degrees C, respectively. When the competing metabolic network was inactivated by knock-out mutation, the itaconic acid concentration further increased, to 6.57 g/L.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
Agapakis Christina M, 2010, J Biol Eng, V4, P3, DOI 10.1186/1754-1611-4-3
[2]   Butyrate Production in Engineered Escherichia coli With Synthetic Scaffolds [J].
Baek, Jang-Mi ;
Mazumdar, Suman ;
Lee, Sang-Woo ;
Jung, Moo-Young ;
Lim, Jae-Hyung ;
Seo, Sang-Woo ;
Jung, Gyoo-Yeol ;
Oh, Min-Kyu .
BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (10) :2790-2794
[3]   Aconitase as iron-sulfur protein, enzyme, and iron-regulatory protein [J].
Beinert, H ;
Kennedy, MC ;
Stout, CD .
CHEMICAL REVIEWS, 1996, 96 (07) :2335-2373
[4]   Metabolic engineering of Yarrowia lipolytica for itaconic acid production [J].
Blazeck, John ;
Hill, Andrew ;
Jamoussi, Mariam ;
Pan, Anny ;
Miller, Jarrett ;
Alper, Hal S. .
METABOLIC ENGINEERING, 2015, 32 :66-73
[5]   Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production [J].
Blazeck, John ;
Miller, Jarrett ;
Pan, Anny ;
Gengler, Jon ;
Holden, Clinton ;
Jamoussi, Mariam ;
Alper, Hal S. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (19) :8155-8164
[6]   Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger [J].
Blumhoff, Marzena L. ;
Steiger, Matthias G. ;
Mattanovich, Diethard ;
Sauer, Michael .
METABOLIC ENGINEERING, 2013, 19 :26-32
[7]   ITACONATE BIOSYNTHESIS IN ASPERGILLUS-TERREUS [J].
BONNARME, P ;
GILLET, B ;
SEPULCHRE, AM ;
ROLE, C ;
BELOEIL, JC ;
DUCROCQ, C .
JOURNAL OF BACTERIOLOGY, 1995, 177 (12) :3573-3578
[8]   Engineering glyceraldehyde-3-phosphate dehydrogenase for switching control of glycolysis in Escherichia coli [J].
Cho, Han-Saem ;
Seo, Sang Woo ;
Kim, Young Mi ;
Jung, Gyoo Yeol ;
Park, Jong Moon .
BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (10) :2612-2619
[9]   Synthetic protein scaffolds provide modular control over metabolic flux [J].
Dueber, John E. ;
Wu, Gabriel C. ;
Malmirchegini, G. Reza ;
Moon, Tae Seok ;
Petzold, Christopher J. ;
Ullal, Adeeti V. ;
Prather, Kristala L. J. ;
Keasling, Jay D. .
NATURE BIOTECHNOLOGY, 2009, 27 (08) :753-U107
[10]   Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli [J].
Harder, Bjoern-Johannes ;
Bettenbrock, Katja ;
Klamt, Steffen .
BIOTECHNOLOGY AND BIOENGINEERING, 2018, 115 (01) :156-164