A Tunable Radial Basis Function Model for Nonlinear System Identification Using Particle Swarm Optimisation

被引:1
|
作者
Chen, S. [1 ]
Hong, X. [3 ]
Luk, B. L. [2 ]
Harris, C. J. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[3] Univ Reading, Sch Syst Engn, Reading, Berks RG6 6AY, England
关键词
ORTHOGONAL LEAST-SQUARES; PREDICTION-ERROR; ALGORITHM; PARAMETERS; NETWORKS; SIZE;
D O I
10.1109/CDC.2009.5399687
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.
引用
收藏
页码:6762 / 6767
页数:6
相关论文
共 50 条
  • [31] Application of radial basis function optimized by quantum particle swarm optimization algorithm in electric power system
    Zhao, Yuhong
    Lei, Lin
    Sheng, Yifa
    Information Technology Journal, 2013, 12 (21) : 6475 - 6480
  • [32] Identification of nonlinear dynamical system based on adaptive radial basis function neural networks
    Luo G.
    Min H.
    Yang Z.
    Neural Computing and Applications, 2024, 36 (25) : 15617 - 15629
  • [33] Particle swarm optimization assisted multiuser detection along with radial basis function
    Zubair, Muhammad
    Choudhry, Muhammad Aamir Saleem
    Malik, Aqdas Naveed
    Qureshi, Ijaz Mansoor
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2007, E90B (07) : 1861 - 1863
  • [34] Improving Performance of Radial Basis Function Network based with Particle Swarm Optimization
    Qasem, Sultan Noman
    Shamsuddin, Siti Mariyam Hj
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 3149 - 3156
  • [35] An Improved Particle Swarm Optimization Algorithm for Radial Basis Function Neural Network
    Duan Qichang
    Zhao Min
    Duan Pan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 2309 - +
  • [36] Parameters identification of reduced governor system model for diesel-engine generator by using hybrid particle swarm optimisation
    Lin, Chien-Hung
    Wu, Chi-Jui
    Yang, Jun-Zhe
    Liao, Ching-Jung
    IET ELECTRIC POWER APPLICATIONS, 2018, 12 (09) : 1265 - 1271
  • [37] Radial Basis Function Network Training Using a Nonsymmetric Partition of the Input Space and Particle Swarm Optimization
    Alexandridis, Alex
    Chondrodima, Eva
    Sarimveis, Haralambos
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (02) : 219 - 230
  • [38] Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm
    Centeno Drehmer, Luis Roberto
    Paucar Casas, Walter Jesus
    Gomes, Herbert Martins
    VEHICLE SYSTEM DYNAMICS, 2015, 53 (04) : 449 - 474
  • [39] Nonlinear system identification using butterfly optimisation algorithm and Hammerstein model
    Singh, Sandeep
    Rawat, Tarun Kumar
    Ashok, Alaknanda
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 42 (02) : 171 - 179
  • [40] Optimised implementation of AVR system using particle swarm optimisation
    Jarrah, Amin
    Zaitoun, Mohmmad
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2022, 25 (03) : 272 - 284