A Tunable Radial Basis Function Model for Nonlinear System Identification Using Particle Swarm Optimisation

被引:1
作者
Chen, S. [1 ]
Hong, X. [3 ]
Luk, B. L. [2 ]
Harris, C. J. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[3] Univ Reading, Sch Syst Engn, Reading, Berks RG6 6AY, England
来源
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009) | 2009年
关键词
ORTHOGONAL LEAST-SQUARES; PREDICTION-ERROR; ALGORITHM; PARAMETERS; NETWORKS; SIZE;
D O I
10.1109/CDC.2009.5399687
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.
引用
收藏
页码:6762 / 6767
页数:6
相关论文
共 30 条
[1]   A PREDICTION-ERROR AND STEPWISE-REGRESSION ESTIMATION ALGORITHM FOR NONLINEAR-SYSTEMS [J].
BILLINGS, SA ;
VOON, WSF .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (03) :803-822
[2]   PRACTICAL IDENTIFICATION OF NARMAX MODELS USING RADIAL BASIS FUNCTIONS [J].
CHEN, S ;
BILLINGS, SA ;
COWAN, CFN ;
GRANT, PM .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 52 (06) :1327-1350
[3]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[4]   RECURSIVE HYBRID ALGORITHM FOR NONLINEAR-SYSTEM IDENTIFICATION USING RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
BILLINGS, SA ;
GRANT, PM .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (05) :1051-1070
[5]   Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design [J].
Chen, S ;
Hong, X ;
Harris, CJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) :1029-1036
[6]   Sparse mzodeling using orthogonal forward regression with PRESS statistic and regularization [J].
Chen, S ;
Hong, X ;
Harris, CJ ;
Sharkey, PM .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (02) :898-911
[7]   NONLINEAR-SYSTEMS IDENTIFICATION USING RADIAL BASIS FUNCTIONS [J].
CHEN, S ;
BILLINGS, SA ;
COWAN, CFN ;
GRANT, PM .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (12) :2513-2539
[8]   REPRESENTATIONS OF NON-LINEAR SYSTEMS - THE NARMAX MODEL [J].
CHEN, S ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (03) :1013-1032
[9]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[10]   NONLINEAR TIME-SERIES MODELING AND PREDICTION USING GAUSSIAN RBF NETWORKS [J].
CHEN, S .
ELECTRONICS LETTERS, 1995, 31 (02) :117-118