A Tunable Radial Basis Function Model for Nonlinear System Identification Using Particle Swarm Optimisation

被引:1
|
作者
Chen, S. [1 ]
Hong, X. [3 ]
Luk, B. L. [2 ]
Harris, C. J. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[3] Univ Reading, Sch Syst Engn, Reading, Berks RG6 6AY, England
关键词
ORTHOGONAL LEAST-SQUARES; PREDICTION-ERROR; ALGORITHM; PARAMETERS; NETWORKS; SIZE;
D O I
10.1109/CDC.2009.5399687
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.
引用
收藏
页码:6762 / 6767
页数:6
相关论文
共 50 条
  • [1] Non-linear system identification using particle swarm optimisation tuned radial basis function models
    Chen, Sheng
    Hong, Xia
    Luk, Bing L.
    Harris, Chris J.
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2009, 1 (04) : 246 - 258
  • [2] Radial Basis Function Classifier Construction Using Particle Swarm Optimisation Aided Orthogonal Forward Regression
    Chen, Sheng
    Hong, Xia
    Harris, Chris J.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [3] Nonlinear dynamic system identification using radial basis function networks
    Ni, XF
    Simons, SJR
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 935 - 936
  • [4] Identification of nonlinear systems using modified particle swarm optimisation: a hydraulic suspension system
    Alfi, Alireza
    Fateh, Mohammad Mehdi
    VEHICLE SYSTEM DYNAMICS, 2011, 49 (06) : 871 - 887
  • [5] Nonlinear identification method of a yo-yo system using fuzzy model and fast particle swarm optimisation
    Herrera, Bruno Meirelles
    Ribas, Leonardo
    Coelho, Leandro dos Santos
    APPLIED SOFT COMPUTING TECHNOLOGIES: THE CHALLENGE OF COMPLEXITY, 2006, 34 : 303 - 314
  • [6] Identification of nonlinear force of vibrating system using radial basis function network
    Zhao, YH
    Tu, LY
    Zuo, JX
    Li, GP
    ICVE'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VIBRATION ENGINEERING, VOL I, 1998, : 256 - 260
  • [7] Nonlinear system identification for speech model using linear predictive coefficients based radial basis function
    Pattanaik, Rakesh Kumar
    Mohanty, Mihir Narayan
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (05): : 1139 - 1150
  • [8] Nonlinear system identification using radial basis functions
    Mokhasi, Paritosh
    Rempfer, Dietmar
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (02) : 121 - 162
  • [9] Nonlinear mapping using particle swarm optimisation
    Edwards, AI
    Engelbrecht, AP
    Franken, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 306 - 313
  • [10] Cooperative learning for radial basis function networks using particle swarm optimization
    Alexandridis, Alex
    Chondrodima, Eva
    Sarimveis, Haralambos
    APPLIED SOFT COMPUTING, 2016, 49 : 485 - 497