Modulational instability in fractional nonlinear Schrodinger equation

被引:62
作者
Zhang, Lifu [1 ]
He, Zenghui [1 ]
Conti, Claudio [1 ,2 ,3 ]
Wang, Zhiteng [1 ]
Hu, Yonghua [4 ]
Lei, Dajun [5 ]
Li, Ying [1 ]
Fan, Dianyuan [1 ]
机构
[1] Shenzhen Univ, SZU NUS Collaborat Innovat Ctr Optoelect Sci & Te, Int Collaborat Lab Mat Optoelect Sci & Technol 2D, Key Lab Optoelect Devices & Syst,Minist Educ & Gu, Shenzhen 518060, Peoples R China
[2] CNR, Inst Complex Syst ISC, Via deiTaurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[5] Xiangnan Univ, Sch Elect Informat & Elect Engn, Chenzhou 423000, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 48卷
基金
中国国家自然科学基金;
关键词
Fractional calculus; Modulational instability; Nonlinear Schrodinger equation; Linear stability analysis; DIFFERENCE SCHEME; CONICAL EMISSION; OPTICAL BEAMS; EXISTENCE;
D O I
10.1016/j.cnsns.2017.01.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional calculus is entering the field of nonlinear optics to describe unconventional regimes, as disorder biological media and soft-matter. Here we investigate spatiotemporal modulational instability (MI) in a fractional nonlinear Schrodinger equation. We derive the MI gain spectrum in terms of the Levy indexes and a varying number of spatial dimensions. We show theoretically and numerically that the Levy indexes affect fastest growth frequencies and MI bandwidth and gain. Our results unveil a very rich scenario that may occur in the propagation of ultrashort pulses in random media and metamaterials, and may sustain novel kinds of propagation invariant optical bullets. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 53 条
[1]  
Agrawal G., 2001, NONLINEAR FIBER OPTI
[2]   MODULATIONAL INSTABILITY OF COHERENT OPTICAL-FIBER TRANSMISSION SIGNALS [J].
ANDERSON, D ;
LISAK, M .
OPTICS LETTERS, 1984, 9 (10) :468-470
[3]  
[Anonymous], FRACTIONAL DERIVATIV
[4]   A Levy flight for light [J].
Barthelemy, Pierre ;
Bertolotti, Jacopo ;
Wiersma, Diederik S. .
NATURE, 2008, 453 (7194) :495-498
[5]   Engineering Disorder in Superdiffusive Levy Glasses [J].
Bertolotti, Jacopo ;
Vynck, Kevin ;
Pattelli, Lorenzo ;
Barthelemy, Pierre ;
Lepri, Stefano ;
Wiersma, Diederik S. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (06) :965-968
[6]  
BESPALOV VI, 1966, JETP LETT-USSR, V3, P307
[7]   Optical spatial solitons in soft matter [J].
Conti, C ;
Ruocco, G ;
Trillo, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[8]   X-wave-mediated instability of plane waves in Kerr media [J].
Conti, C .
PHYSICAL REVIEW E, 2003, 68 (01) :4
[9]   Laser beam filamentation in fractal aggregates [J].
Conti, Claudio ;
Ghofraniha, Neda ;
Ruocco, Giancarlo ;
Trillo, Stefano .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)
[10]  
Engheta N, 1998, MICROW OPT TECHN LET, V17, P86, DOI 10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO