Modulational instability in fractional nonlinear Schrodinger equation

被引:61
|
作者
Zhang, Lifu [1 ]
He, Zenghui [1 ]
Conti, Claudio [1 ,2 ,3 ]
Wang, Zhiteng [1 ]
Hu, Yonghua [4 ]
Lei, Dajun [5 ]
Li, Ying [1 ]
Fan, Dianyuan [1 ]
机构
[1] Shenzhen Univ, SZU NUS Collaborat Innovat Ctr Optoelect Sci & Te, Int Collaborat Lab Mat Optoelect Sci & Technol 2D, Key Lab Optoelect Devices & Syst,Minist Educ & Gu, Shenzhen 518060, Peoples R China
[2] CNR, Inst Complex Syst ISC, Via deiTaurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[5] Xiangnan Univ, Sch Elect Informat & Elect Engn, Chenzhou 423000, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 48卷
基金
中国国家自然科学基金;
关键词
Fractional calculus; Modulational instability; Nonlinear Schrodinger equation; Linear stability analysis; DIFFERENCE SCHEME; CONICAL EMISSION; OPTICAL BEAMS; EXISTENCE;
D O I
10.1016/j.cnsns.2017.01.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional calculus is entering the field of nonlinear optics to describe unconventional regimes, as disorder biological media and soft-matter. Here we investigate spatiotemporal modulational instability (MI) in a fractional nonlinear Schrodinger equation. We derive the MI gain spectrum in terms of the Levy indexes and a varying number of spatial dimensions. We show theoretically and numerically that the Levy indexes affect fastest growth frequencies and MI bandwidth and gain. Our results unveil a very rich scenario that may occur in the propagation of ultrashort pulses in random media and metamaterials, and may sustain novel kinds of propagation invariant optical bullets. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 50 条
  • [1] On the modulational instability of the nonlinear Schrodinger equation with dissipation
    Rapti, Z.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Malomed, B. A.
    PHYSICA SCRIPTA, 2004, T113 : 74 - 77
  • [2] Modulational instability for a logarithmic nonlinear Schrodinger equation
    Yamano, Takuya
    APPLIED MATHEMATICS LETTERS, 2015, 48 : 124 - 127
  • [3] Azimuthal modulational instability of vortices in the nonlinear Schrodinger equation
    Caplan, R. M.
    Hoq, Q. E.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    OPTICS COMMUNICATIONS, 2009, 282 (07) : 1399 - 1405
  • [4] STUDY OF QUASIPERIODIC SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION AND THE NONLINEAR MODULATIONAL INSTABILITY
    TRACY, ER
    CHEN, HH
    LEE, YC
    PHYSICAL REVIEW LETTERS, 1984, 53 (03) : 218 - 221
  • [5] Modulational instability induced by randomly varying coefficients for the nonlinear Schrodinger equation
    Garnier, J
    Abdullaev, FK
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 145 (1-2) : 65 - 83
  • [6] Stochastic modulational instability in the nonlinear Schrodinger equation with colored random dispersion
    Armaroli, Andrea
    Dujardin, Guillaume
    Kudlinski, Alexandre
    Mussot, Arnaud
    Trillo, Stefano
    De Bievre, Stephan
    Conforti, Matteo
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [7] Modulational instability and homoclinic orbit solutions in vector nonlinear Schrodinger equation
    Ling, Liming
    Zhao, Li-Chen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 449 - 471
  • [8] Modulational instability and exact solutions of the nonlinear Schrodinger equation coupled with the nonlinear Klein-Gordon equation
    Tang, Xiao-yan
    Shukla, Padma Kant
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (13) : 3729 - 3740
  • [9] WHITHAM DEFORMATIONS PARTIALLY SATURATING A MODULATIONAL INSTABILITY IN A NONLINEAR SCHRODINGER-EQUATION
    BIKBAEV, RF
    KUDASHEV, VR
    JETP LETTERS, 1994, 59 (11) : 770 - 774
  • [10] Modulational instability based on the exact solution of nonlinear Schrodinger equation with an elliptic potential
    Deng, Yangbao
    Zhang, Shihu
    Fu, Xiquan
    Deng, Shuguang
    Xiong, Cuixiu
    Zhang, Guangfu
    OPTIK, 2013, 124 (23): : 6411 - 6414