MILNOR NUMBERS OF PROJECTIVE HYPERSURFACES WITH ISOLATED SINGULARITIES

被引:16
作者
Huh, June [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
POLAR CREMONA TRANSFORMATIONS; LEFSCHETZ THEOREMS; VARIETIES; TOPOLOGY;
D O I
10.1215/00127094-2713700
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a projective hypersurface of fixed degree and dimension which has only isolated singular points. We show that, if the sum of the Milnor numbers at the singular points of V is large, then V cannot have a point of large multiplicity, unless V is a cone. As an application, we give an affirmative answer to a conjecture of Dimca and Papadima.
引用
收藏
页码:1525 / 1548
页数:24
相关论文
共 37 条
  • [21] Generic sections of essentially isolated determinantal singularities
    Brasselet, Jean-Paul
    Chachapoyas, Nancy
    Ruas, Maria A. S.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (11)
  • [22] On Isolated Log Canonical Singularities with Index One
    Fujino, Osamu
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2011, 18 (03): : 299 - 323
  • [23] Mirror symmetry for quasi-smooth Calabi-Yau hypersurfaces in weighted projective spaces
    Batyrev, Victor
    Schaller, Karin
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 164
  • [24] On restricted analytic gradients on analytic isolated surface singularities
    Grandjean, Vincent
    Sanz, Fernando
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) : 1684 - 1708
  • [25] Isolated hypersurface singularities, spectral invariants, and quantum cohomology
    Kawamoto, Yusuke
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (811): : 183 - 217
  • [26] On the F-purity of isolated log canonical singularities
    Fujino, Osamu
    Takagi, Shunsuke
    COMPOSITIO MATHEMATICA, 2013, 149 (09) : 1495 - 1510
  • [27] The vanishing cohomology of non-isolated hypersurface singularities
    Maxim, Laurentiu
    Paunescu, Laurentiu
    Tibar, Mihai
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 112 - 153
  • [28] Non-isolated hypersurface singularities and Le cycles
    Massey, David B.
    REAL AND COMPLEX SINGULARITIES, 2016, 675 : 197 - 227
  • [29] A splitting criterion for an isolated singularity at x=0 in a family of even hypersurfaces
    Smith, Roy
    Varley, Robert
    MANUSCRIPTA MATHEMATICA, 2012, 137 (1-2) : 233 - 245
  • [30] Topological Numbers and Singularities in Scalar Images: Scale-Space Evolution Properties
    Stiliyan N. Kalitzin
    Bart M. Ter Haar Romeny
    Alfons H. Salden
    Peter FM Nacken
    Max A. Viergever
    Journal of Mathematical Imaging and Vision, 1998, 9 : 253 - 269