Low Complexity Automatic Modulation Classification Based on Order-Statistics

被引:121
作者
Han, Lubing [1 ,2 ]
Gao, Feifei [1 ,2 ]
Li, Zan [3 ]
Dobre, Octavia A. [4 ]
机构
[1] Tsinghua Univ, Dept Automat, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automat, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[3] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[4] Mem Univ, Dept Elect & Comp Engn, St John, NF A1B 3X9, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Automatic modulation classification; order-statistics machine learning; backpropagation neural networks; linear support vector machine; RECOGNITION; ESTIMATOR; SELECTION; DISTANCE;
D O I
10.1109/TWC.2016.2623716
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose three automatic modulation classification classifiers based on order-statistics and reduced order-statistics, where the order-statistics are the random variables sorted by ascending order and the reduced order-statistics represent a subset of the original order-statistics. Specifically, the linear support vector machine classifier applies the linear combination of the order-statistics of the received signals, while the approximate maximum likelihood and the backpropagation neural networks (BPNNs) classifier resort to the reduced order-statistics to decrease the computational complexity. Moreover, BPNN is applicable for modulation classification both in known and unknown channel scenarios. It is shown that in the known channel scenario, the proposed classifiers provide a good tradeoff between performance and computational complexity, while in the unknown channel scenario, the proposed BPNN classifier outperforms the expectation maximization classifier in terms of both classification performance and computational complexity. Simulations results are provided to evaluate the proposed classifiers.
引用
收藏
页码:400 / 411
页数:12
相关论文
共 37 条
[1]  
Abdi A, 2004, IEEE MILIT COMMUN C, P211
[2]  
[Anonymous], 1974, Ph.D. Thesis
[3]  
[Anonymous], 1981, Order Statistics
[4]   Automatic Modulation Classification Using Combination of Genetic Programming and KNN [J].
Aslam, Muhammad Waqar ;
Zhu, Zhechen ;
Nandi, Asoke Kumar .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (08) :2742-2750
[5]  
Ben-Bassat M., 1982, Handbook of statistics, V2, P773, DOI DOI 10.1016/S0169-7161(82)02038-0
[6]   Cumulants-based modulation classification technique in multipath fading channels [J].
Chang, Dah-Chung ;
Shih, Po-Kuan .
IET COMMUNICATIONS, 2015, 9 (06) :828-835
[7]   Survey of automatic modulation classification techniques: classical approaches and new trends [J].
Dobre, O. A. ;
Abdi, A. ;
Bar-Ness, Y. ;
Su, W. .
IET COMMUNICATIONS, 2007, 1 (02) :137-156
[8]  
Dobre OA, 2005, IEEE SARNOFF SYMPOS, P226
[9]  
Dobre OA, 2005, IEEE MILIT COMMUN C, P2499
[10]   Cyclostationarity-Based Robust Algorithms for QAM Signal Identification [J].
Dobre, Octavia A. ;
Oner, Menguc ;
Rajan, Sreeraman ;
Inkol, Robert .
IEEE COMMUNICATIONS LETTERS, 2012, 16 (01) :12-15