Dimerization Induced by C-Terminal 14-3-3 Binding Is Sufficient for BRAF Kinase Activation

被引:26
作者
Liau, Nicholas P. D. [1 ]
Venkatanarayan, Avinashnarayan [2 ]
Quinn, John G. [3 ]
Phung, Wilson [4 ]
Malek, Shiva [2 ]
Hymowitz, Sarah G. [1 ]
Sudhamsu, Jawahar [1 ,2 ]
机构
[1] Genentech Inc, Dept Struct Biol, San Francisco, CA 94080 USA
[2] Genentech Inc, Dept Discovery Oncol, San Francisco, CA 94080 USA
[3] Genentech Inc, Dept Biochem & Cellular Pharmacol, San Francisco, CA 94080 USA
[4] Genentech Inc, Dept Microchem Prote & Lipid, San Francisco, CA 94080 USA
基金
美国国家卫生研究院;
关键词
WILD-TYPE; COMPLEX REVEALS; MAPK PATHWAY; RAF KINASE; MUTATIONS; MECHANISM; PHOSPHORYLATION; INHIBITION; DIMERS;
D O I
10.1021/acs.biochem.0c00517
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Ras-RAF-MEK-ERK signaling axis, commonly mutated in human cancers, is highly regulated to prevent aberrant signaling in healthy cells. One of the pathway modulators, 14-3-3, a constitutive dimer, induces RAF dimerization and activation by binding to a phosphorylated motif C-terminal to the RAF kinase domain. Recent work has suggested that a C-terminal "DTS" region in BRAF is necessary for this 14-3-3-mediated activation. We show that the catalytic activity and ATP binding affinity of the BRAF:14-3-3 complex is insensitive to the presence or absence of the DTS, while the ATP sites of both BRAF molecules are identical and available for binding. We also present a crystal structure of the apo BRAF:14-3-3 complex showing that the DTS is not required to attain the catalytically active conformation of BRAF. Rather, BRAF dimerization induced by 14-3-3 is the key step in activation, allowing the active BRAF:14-3-3 tetramer to achieve catalytic activity comparable to the constitutively active oncogenic BRAF V600E mutant.
引用
收藏
页码:3982 / 3992
页数:11
相关论文
共 35 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]  
Bridges Dave, 2004, Sci STKE, V2004, pre10, DOI 10.1126/stke.2422004re10
[3]   Mechanism of BRAF Activation through Biochemical Characterization of the Recombinant Full-Length Protein [J].
Cope, Nicholas ;
Candelora, Christine ;
Wong, Kenneth ;
Kumar, Sujeet ;
Nan, Haihan ;
Grasso, Michael ;
Novak, Borna ;
Li, Yana ;
Marmorstein, Ronen ;
Wang, Zhihong .
CHEMBIOCHEM, 2018, 19 (18) :1988-1997
[4]  
Copeland R. A., 2000, Enzymes: a practical introduction to structure, mechanism, and data analysis, V2nd
[5]   Mutations of the BRAF gene in human cancer [J].
Davies, H ;
Bignell, GR ;
Cox, C ;
Stephens, P ;
Edkins, S ;
Clegg, S ;
Teague, J ;
Woffendin, H ;
Garnett, MJ ;
Bottomley, W ;
Davis, N ;
Dicks, N ;
Ewing, R ;
Floyd, Y ;
Gray, K ;
Hall, S ;
Hawes, R ;
Hughes, J ;
Kosmidou, V ;
Menzies, A ;
Mould, C ;
Parker, A ;
Stevens, C ;
Watt, S ;
Hooper, S ;
Wilson, R ;
Jayatilake, H ;
Gusterson, BA ;
Cooper, C ;
Shipley, J ;
Hargrave, D ;
Pritchard-Jones, K ;
Maitland, N ;
Chenevix-Trench, G ;
Riggins, GJ ;
Bigner, DD ;
Palmieri, G ;
Cossu, A ;
Flanagan, A ;
Nicholson, A ;
Ho, JWC ;
Leung, SY ;
Yuen, ST ;
Weber, BL ;
Siegler, HF ;
Darrow, TL ;
Paterson, H ;
Marais, R ;
Marshall, CJ ;
Wooster, R .
NATURE, 2002, 417 (6892) :949-954
[6]   Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2 [J].
Foster, Scott A. ;
Whalen, Daniel M. ;
Oezen, Aysxeguel ;
Wongchenko, Matthew J. ;
Yin, JianPing ;
Yen, Ivana ;
Schaefer, Gabriele ;
Mayfield, John D. ;
Chmielecki, Juliann ;
Stephens, Philip J. ;
Albacker, Lee A. ;
Yan, Yibing ;
Song, Kyung ;
Hatzivassiliou, Georgia ;
Eigenbrot, Charles ;
Yu, Christine ;
Shaw, Andrey S. ;
Manning, Gerard ;
Skelton, Nicholas J. ;
Hymowitz, Sarah G. ;
Malek, Shiva .
CANCER CELL, 2016, 29 (04) :477-493
[7]   MOLECULAR-CLONING AND CHARACTERIZATION OF AN ACTIVATED HUMAN C-RAF-1 GENE [J].
FUKUI, M ;
YAMAMOTO, T ;
KAWAI, S ;
MITSUNOBU, F ;
TOYOSHIMA, K .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (05) :1776-1781
[8]   Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization [J].
Garnett, MJ ;
Rana, S ;
Paterson, H ;
Barford, D ;
Marais, R .
MOLECULAR CELL, 2005, 20 (06) :963-969
[9]   Structure of the BRAF-MEK Complex Reveals a Kinase Activity Independent Role for BRAF in MAPK Signaling [J].
Haling, Jacob R. ;
Sudhamsu, Jawahar ;
Yen, Ivana ;
Sideris, Steve ;
Sandoval, Wendy ;
Phung, Wilson ;
Bravo, Brandon J. ;
Giannetti, Anthony M. ;
Peck, Ariana ;
Masselot, Alexandre ;
Morales, Tony ;
Smith, Darin ;
Brandhuber, Barbara J. ;
Hymowitz, Sarah G. ;
Malek, Shiva .
CANCER CELL, 2014, 26 (03) :402-413
[10]   RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth [J].
Hatzivassiliou, Georgia ;
Song, Kyung ;
Yen, Ivana ;
Brandhuber, Barbara J. ;
Anderson, Daniel J. ;
Alvarado, Ryan ;
Ludlam, Mary J. C. ;
Stokoe, David ;
Gloor, Susan L. ;
Vigers, Guy ;
Morales, Tony ;
Aliagas, Ignacio ;
Liu, Bonnie ;
Sideris, Steve ;
Hoeflich, Klaus P. ;
Jaiswal, Bijay S. ;
Seshagiri, Somasekar ;
Koeppen, Hartmut ;
Belvin, Marcia ;
Friedman, Lori S. ;
Malek, Shiva .
NATURE, 2010, 464 (7287) :431-U132