Pseudosurface acoustic waves in hypersonic surface phononic crystals

被引:43
|
作者
Nardi, D. [1 ,2 ]
Banfi, F. [1 ]
Giannetti, C. [1 ]
Revaz, B. [3 ]
Ferrini, G. [1 ]
Parmigiani, F. [4 ,5 ]
机构
[1] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
[2] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy
[3] Ecole Polytech Fed Lausanne, Lab Microsyst 3, CH-1015 Lausanne, Switzerland
[4] Univ Trieste, Dipartimento Fis, I-34012 Trieste, Italy
[5] Sincrotrone Trieste, I-34012 Trieste, Italy
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 10期
关键词
PICOSECOND ULTRASONICS; VIBRATIONAL-MODES; FIBERS;
D O I
10.1103/PhysRevB.80.104119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theoretical framework allowing to properly address the nature of surfacelike eigenmodes in a hypersonic surface phononic crystal, a composite structure made of periodic metal stripes of nanometer size and periodicity of 1 mu m, deposited over a semi-infinite silicon substrate. In surface-based phononic crystals there is no distinction between the eigenmodes of the periodically nanostructured overlayer and the surface acoustic modes of the semi-infinite substrate, the solution of the elastic equation being a pseudosurface acoustic wave partially localized on the nanostructures and radiating energy into the bulk. This problem is particularly severe in the hypersonic frequency range, where semi-infinite substrate's surface acoustic modes strongly couple to the periodic overlayer, thus preventing any perturbative approach. We solve the problem introducing a surface-likeness coefficient as a tool allowing to find pseudosurface acoustic waves and to calculate their line shapes. Having accessed the pseudosurface modes of the composite structure, the same theoretical frame allows reporting on the gap opening in the now well-defined pseudo-SAW frequency spectrum. We show how the filling fraction, mass loading, and geometric factors affect both the frequency gap, and how the mechanical energy is scattered out of the surface waveguiding modes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Ultrasonic and hypersonic phononic crystals
    Khelif, A.
    Hsiao, F. -L.
    Benchabane, S.
    Choujaa, A.
    Aoubiza, B.
    Laude, V.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES VII, 2008, 6901
  • [32] Numerical investigation of diffraction of acoustic waves by phononic crystals
    Moiseyenko, Rayisa P.
    Declercq, Nico F.
    Laude, Vincent
    INTERNATIONAL CONGRESS ON ULTRASONICS (GDANSK 2011), 2012, 1433 : 319 - 322
  • [33] Scanning phononic lattices with surface acoustic waves
    Vines, RE
    Wolfe, JP
    PHYSICA B, 1999, 263 : 567 - 570
  • [34] Scanning phononic lattices with surface acoustic waves
    Vines, R.E.
    Wolfe, J.P.
    Physica B: Condensed Matter, 1999, 263 : 567 - 570
  • [35] Scanning phononic lattices with surface acoustic waves
    Vines, RE
    Wolfe, JR
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (9-10): : 810 - 823
  • [36] Surface acoustic waves in the continuous spectrum of Bloch waves in piezoelectric one-dimensional phononic crystals
    Darinskii, A. N.
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [37] Silicon phononic crystal for surface acoustic waves
    Benchabane, S
    Khelif, A
    Daniau, W
    Robert, L
    Pétrini, V
    Assouar, B
    Vincent, B
    Elmazria, O
    Krüger, J
    Laude, V
    2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4, 2005, : 922 - 925
  • [38] ANALYSIS OF SURFACE ACOUSTIC WAVES IN PIEZOELECTRIC PHONONIC CRYSTALS USING HIERARCHICAL CASCADING TECHNIQUE
    Song, Ming-xin
    Li, Hong-lang
    Ke, Ya-bing
    Tian, Ya-hui
    Zhang, Bi-Xing
    PROCEEDINGS OF THE 2019 14TH SYMPOSIUM ON PIEZOELECTRCITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA19), 2019, : 414 - 417
  • [39] Isolation of bulk acoustic waves in a sensor array with phononic crystals
    Chen, Yung-Yu
    Huang, Li-Chung
    Wu, Tsung-Tsong
    Sun, Jia-Hong
    2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 2487 - 2490
  • [40] SURFACE AND PSEUDOSURFACE MODES IN IONIC CRYSTALS
    CHEN, TS
    ALLDREDGE, GP
    DEWETTE, FW
    ALLEN, RE
    PHYSICAL REVIEW LETTERS, 1971, 26 (25) : 1543 - +