Pseudosurface acoustic waves in hypersonic surface phononic crystals

被引:43
|
作者
Nardi, D. [1 ,2 ]
Banfi, F. [1 ]
Giannetti, C. [1 ]
Revaz, B. [3 ]
Ferrini, G. [1 ]
Parmigiani, F. [4 ,5 ]
机构
[1] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
[2] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy
[3] Ecole Polytech Fed Lausanne, Lab Microsyst 3, CH-1015 Lausanne, Switzerland
[4] Univ Trieste, Dipartimento Fis, I-34012 Trieste, Italy
[5] Sincrotrone Trieste, I-34012 Trieste, Italy
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 10期
关键词
PICOSECOND ULTRASONICS; VIBRATIONAL-MODES; FIBERS;
D O I
10.1103/PhysRevB.80.104119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theoretical framework allowing to properly address the nature of surfacelike eigenmodes in a hypersonic surface phononic crystal, a composite structure made of periodic metal stripes of nanometer size and periodicity of 1 mu m, deposited over a semi-infinite silicon substrate. In surface-based phononic crystals there is no distinction between the eigenmodes of the periodically nanostructured overlayer and the surface acoustic modes of the semi-infinite substrate, the solution of the elastic equation being a pseudosurface acoustic wave partially localized on the nanostructures and radiating energy into the bulk. This problem is particularly severe in the hypersonic frequency range, where semi-infinite substrate's surface acoustic modes strongly couple to the periodic overlayer, thus preventing any perturbative approach. We solve the problem introducing a surface-likeness coefficient as a tool allowing to find pseudosurface acoustic waves and to calculate their line shapes. Having accessed the pseudosurface modes of the composite structure, the same theoretical frame allows reporting on the gap opening in the now well-defined pseudo-SAW frequency spectrum. We show how the filling fraction, mass loading, and geometric factors affect both the frequency gap, and how the mechanical energy is scattered out of the surface waveguiding modes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals
    Nardi, Damiano
    Travagliati, Marco
    Siemens, Mark E.
    Li, Qing
    Murnane, Margaret M.
    Kapteyn, Henry C.
    Ferrini, Gabriele
    Parmigiani, Fulvio
    Banfi, Francesco
    NANO LETTERS, 2011, 11 (10) : 4126 - 4133
  • [2] Surface and pseudosurface acoustic waves in superlattices
    Aono, T
    Tamura, S
    PHYSICAL REVIEW B, 1998, 58 (08): : 4838 - 4845
  • [3] Lowering diffraction of surface acoustic waves by phononic crystals
    Sun, Jia-Hong
    Yu, Yuan-Hai
    2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2015,
  • [4] Dynamic imaging of surface acoustic waves in phononic crystals
    Wright, Oliver B.
    Veres, Istvan A.
    Profunser, Dieter M.
    Matsuda, Osamu
    Culshaw, Brian
    Lang, Udo
    SMART NANO-MICRO MATERIALS AND DEVICES, 2011, 8204
  • [5] Two-dimensional phononic crystals: surface acoustic waves
    Tanaka, Y
    Tamura, S
    PHYSICA B, 1999, 263 : 77 - 80
  • [6] Two-dimensional phononic crystals: Surface acoustic waves
    Department of Applied Physics, Hokkaido University, Sapporo 060, Japan
    Phys B Condens Matter, (77-80):
  • [7] QUASILONGITUDINAL PSEUDOSURFACE ACOUSTIC-WAVES IN PIEZOELECTRIC-CRYSTALS
    KOZLOV, AI
    ELECTRONICS LETTERS, 1994, 30 (15) : 1254 - 1255
  • [8] Nanoscale pillar hypersonic surface phononic crystals
    Yudistira, D.
    Boes, A.
    Graczykowski, B.
    Alzina, F.
    Yeo, L. Y.
    Sotomayor Torres, C. M.
    Mitchell, A.
    PHYSICAL REVIEW B, 2016, 94 (09)
  • [9] Full band gaps for surface acoustic waves in piezoelectric phononic crystals
    Laude, V
    Wilm, M
    Benchabane, S
    Khelif, A
    2004 IEEE Ultrasonics Symposium, Vols 1-3, 2004, : 1046 - 1049
  • [10] Band structures of surface acoustic waves in nanostructured phononic crystals with defects
    Hou, C. G.
    Zhang, V. L.
    Lim, H. S.
    Ng, S. C.
    Kuok, M. H.
    Deng, J.
    Wang, S. J.
    APPLIED PHYSICS LETTERS, 2014, 105 (24)