In-situ Conversion of Multiwalled Carbon Nanotubes to Graphene Nanosheets: An Increasing Capacity Anode for Li Ion Batteries

被引:13
作者
Elizabeth, Indu [1 ,2 ,3 ,4 ]
Singh, Bhanu Pratap [1 ,3 ,4 ]
Bijoy, Thoyikkottu K. [2 ]
Reddy, Venkata Rami [2 ]
Karthikeyan, Gunasekaran [2 ]
Singh, Vidya Nand [1 ,3 ]
Dhakate, Sanjay R. [1 ,3 ]
Murugan, Palanichamy [2 ]
Gopukumar, Sukumaran [2 ,3 ,4 ]
机构
[1] CSIR, Natl Phys Lab, Phys & Engn Carbon, New Delhi, India
[2] CSIR, Cent Electrochem Res Inst, Karaikkudi, Tamil Nadu, India
[3] Acad Sci & Innovat Res, New Delhi, India
[4] CSIR, Network Inst Solar Energy, New Delhi, India
关键词
Increasing capacity; graphene nanosheets; anode; carbon nanotube; Li ion batteries; LITHIUM-ION; PERFORMANCE; SNO2; NANOPARTICLES;
D O I
10.1016/j.electacta.2017.02.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A unique in-situ morphology transition from multiwall carbon nanotubes (MWCNT) to graphene nanosheets (GNS) upon Li intercalation results in enormous increase in capacity of SnO2/MWCNT composites anode during cycling. The anode capacity increases from 330 mAg(-1) to 500 mAg(-1) which is more than 50% of its initial capacity when cycled at a current density of 200 mAg(-1). Further when the sample is cycled at a high current density of 500 mAg(-1) the composite sample shows a stable capacity of 400 mAg(-1) for 100 cycles which is attributed to the complete transition of MWCNT to GNSs as confirmed from the high resolution transmission electron microscope (HRTEM) images. First principles density functional theory calculations have been carried out to validate possibility of this morphological transition upon Li intercalation and the results agree well with the experimental findings. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 263
页数:9
相关论文
共 41 条
[1]   Structural stability and bonding nature of Li-Sn-carbon nanocomposites as Li-ion battery anodes: first principles approach [J].
Bijoy, T. K. ;
Karthikeyan, J. ;
Murugan, P. .
RSC ADVANCES, 2015, 5 (01) :123-129
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Diaphyseal locking hip arthroplasty for treatment of failed fixation of intertrochanteric hip fractures [J].
Chen, Yi-Te ;
Chen, Wei-Ming ;
Lee, Kung-Sheng ;
Huang, Ching-Kuei ;
Chiang, Chao-Ching ;
Chen, Tain-Hsiung .
JOURNAL OF ARTHROPLASTY, 2008, 23 (02) :241-246
[4]   Carbon Nanomaterials for Advanced Energy Conversion and Storage [J].
Dai, Liming ;
Chang, Dong Wook ;
Baek, Jong-Beom ;
Lu, Wen .
SMALL, 2012, 8 (08) :1130-1166
[5]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[6]   Development of SnO2/Multiwalled Carbon Nanotube Paper as Free Standing Anode for Lithium Ion Batteries (LIB) [J].
Elizabeth, Indu ;
Mathur, R. B. ;
Maheshwari, P. H. ;
Singh, B. P. ;
Gopukumar, S. .
ELECTROCHIMICA ACTA, 2015, 176 :735-742
[7]   Persistent cyclestability of carbon coated Zn-Sn metal oxide/carbon microspheres as highly reversible anode material for lithium-ion batteries [J].
Fang, Guoqing ;
Kaneko, Shingo ;
Liu, Weiwei ;
Xia, Bingbo ;
Sun, Hongdan ;
Zhang, Ruixue ;
Zheng, Junwei ;
Li, Decheng .
ELECTROCHIMICA ACTA, 2013, 111 :627-634
[8]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[9]   Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis [J].
Gong, Ming ;
Zhou, Wu ;
Tsai, Mon-Che ;
Zhou, Jigang ;
Guan, Mingyun ;
Lin, Meng-Chang ;
Zhang, Bo ;
Hu, Yongfeng ;
Wang, Di-Yan ;
Yang, Jiang ;
Pennycook, Stephen J. ;
Hwang, Bing-Joe ;
Dai, Hongjie .
NATURE COMMUNICATIONS, 2014, 5
[10]   Novel Carbon-Encapsulated Porous SnO2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability [J].
Huang, Bin ;
Li, Xinhai ;
Pei, Yi ;
Li, Shuang ;
Cao, Xi ;
Masse, Robert C. ;
Cao, Guozhong .
SMALL, 2016, 12 (14) :1945-1955