Adjusted survival curves with inverse probability weights

被引:678
作者
Cole, SR
Hernán, MA
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
关键词
graphics; standardization; stratification; survival analysis;
D O I
10.1016/j.cmpb.2003.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Kaplan-Meier survival curves and the associated nonparametric log rank test statistic are methods of choice for unadjusted survival analyses, white the semi-parametric Cox proportional hazards regression model is used ubiquitously as a method for covariate adjustment. The Cox model extends naturally to include covariates, but there is no generally accepted method to graphically depict adjusted survival curves. The authors describe a method and provide a simple worked example using inverse probability weights (IPW) to create adjusted survival curves. When the weights are non-parametrically estimated, this method is equivalent to direct standardization of the survival curves to the combined study population. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 10 条
[1]   Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models [J].
Cole, SR ;
Hernán, MA ;
Robins, JM ;
Anastos, K ;
Chmiel, J ;
Detels, R ;
Ervin, C ;
Feldman, J ;
Greenblatt, R ;
Kingsley, L ;
Lai, SH ;
Young, M ;
Cohen, M ;
Muñoz, A .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2003, 158 (07) :687-694
[2]   Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men [J].
Hernán, MA ;
Brumback, B ;
Robins, JM .
EPIDEMIOLOGY, 2000, 11 (05) :561-570
[3]   THE ROBUST INFERENCE FOR THE COX PROPORTIONAL HAZARDS MODEL [J].
LIN, DY ;
WEI, LJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :1074-1078
[4]   ADJUSTED SURVIVAL-CURVE ESTIMATION USING COVARIATES [J].
MAKUCH, RW .
JOURNAL OF CHRONIC DISEASES, 1982, 35 (06) :437-443
[5]  
Nieto FJ, 1996, AM J EPIDEMIOL, V143, P1059
[6]   A NEW APPROACH TO CAUSAL INFERENCE IN MORTALITY STUDIES WITH A SUSTAINED EXPOSURE PERIOD - APPLICATION TO CONTROL OF THE HEALTHY WORKER SURVIVOR EFFECT [J].
ROBINS, J .
MATHEMATICAL MODELLING, 1986, 7 (9-12) :1393-1512
[7]   Marginal structural models and causal inference in epidemiology [J].
Robins, JM ;
Hernán, MA ;
Brumback, B .
EPIDEMIOLOGY, 2000, 11 (05) :550-560
[8]  
Robins JM, 1998, 1997 P AM STAT ASS S, V1, P10
[9]   REDUCING BIAS IN OBSERVATIONAL STUDIES USING SUBCLASSIFICATION ON THE PROPENSITY SCORE [J].
ROSENBAUM, PR ;
RUBIN, DB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (387) :516-524
[10]  
Rothman K. J., 1998, MODERN EPIDEMIOLOGY