A Mechanistic Study of Nanoscale Structure Development, Phase Transition, Morphology Evolution, and Growth of Ultrathin Barium Titanate Nanostructured Films

被引:36
作者
Ashiri, Rouholah [1 ,2 ]
机构
[1] Sharif Univ Technol, Dept Mat Sci & Engn, Tehran, Iran
[2] Islamic Azad Univ, Dept Mat Sci & Engn, Dezful, Iran
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2014年 / 45A卷 / 09期
关键词
BATIO3; THIN-FILMS; SOL-GEL PROCESS; DIELECTRIC-PROPERTIES; ELECTRICAL-PROPERTIES; OPTICAL-PROPERTIES; MICROSTRUCTURE; PRECURSOR; TEMPERATURE; MICROSCOPY; DEPOSITION;
D O I
10.1007/s11661-014-2352-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, an improved method is developed for preparing highly pure ultrathin barium titanate nanostructured films with desired structural and morphological characteristics. In contrast to other approaches, our method can be carried out at a relatively lower temperature to obtain barium titanate ultrathin films free from secondary phases, impurities, and cracks. To reach an in-depth understanding of scientific basis of the proposed process, and in order to disclose the mechanism of formation and growth of barium titanate ultrathin film, in-detail analysis is carried out using XRD, SEM, FE-SEM, and AFM techniques aided by theoretical calculations. The effects of calcining temperature on the nanoscale structure development, phase transition, morphology evolution, and growth mechanism of the ultrathin barium titanate nanostructured films are studied. XRD results indicate that the reaction leading to the formation of the barium titanate initiates at about 873 K (600 A degrees C) and completes at about 1073 K (800 A degrees C). Moreover, secondary phases are not detected in the XRD patterns of the ultrathin films which this observation ensures the phase purity of the ultrathin films. The results show that the ultrathin films are nanothickness and nanostructured leading to the enhancement of rate of diffusion by activating short-circuit diffusion mechanisms. The high rate of the diffusion enhances the rate of the formation of barium titanate and also prevents from the formation of the secondary phases in the final products. SEM and AFM results indicate that the deposited ultrathin films are crack-free exhibiting a dense nanogranular structure. The results indicate that the root-mean square (RMS) roughness of the ultrathin films is in the range of 1.66 to 6.71 nm indicating the surface of the ultrathin films is smooth. RMS roughness also increases with an increase in the calcining temperature which this observation seems to be related to the grain growth process. Finally, based on the observed results, the mechanism of the formation and growth of the ultrathin barium titanate nanostructured films is deeply disclosed.
引用
收藏
页码:4138 / 4154
页数:17
相关论文
共 50 条
  • [1] Crack-free nanostructured BaTiO3 thin films prepared by sol-gel dip-coating technique
    Ashiri, R.
    Nemati, A.
    Ghamsari, M. Sasard
    [J]. CERAMICS INTERNATIONAL, 2014, 40 (06) : 8613 - 8619
  • [2] Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process
    Ashiri, R.
    [J]. VIBRATIONAL SPECTROSCOPY, 2013, 66 : 24 - 29
  • [3] A modified method for barium titanate nanoparticles synthesis
    Ashiri, R.
    Nemati, Ali
    Ghamsari, M. Sasani
    Sanjabi, S.
    Aalipour, M.
    [J]. MATERIALS RESEARCH BULLETIN, 2011, 46 (12) : 2291 - 2295
  • [4] Characterization of optical properties of amorphous BaTiO3 nanothin films
    Ashiri, R.
    Nemati, Ali
    Ghamsari, M. Sasani
    Aadelkhani, H.
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (50-51) : 2480 - 2484
  • [5] Ashiri R., 2008, THESIS SHARIF U TECH
  • [6] Analysis and Characterization of Relationships Between the Processing and Optical Responses of Amorphous BaTiO3 Nanothin Films Obtained by an Improved Wet Chemical Process
    Ashiri, Rouholah
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2014, 45 (04): : 1472 - 1483
  • [7] Analysis and Characterization of Phase Evolution of Nanosized BaTiO3 Powder Synthesized Through a Chemically Modified Sol-Gel Process
    Ashiri, Rouholah
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (11): : 4414 - 4426
  • [8] Barium titanate characterization by differential scanning calorimetry
    Baeten, F
    Derks, B
    Coppens, W
    van Kleef, E
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2006, 26 (4-5) : 589 - 592
  • [9] Abnormal grain growth in undoped strontium and barium titanate
    Baeurer, M.
    Shih, S. -J.
    Bishop, C.
    Harmer, M. P.
    Cockayne, D.
    Hoffmann, M. J.
    [J]. ACTA MATERIALIA, 2010, 58 (01) : 290 - 300
  • [10] Brinker C. J., 1990, SOL GEL SCI