Understanding the cytokine/chemokine networks in CD4(+) and CD8(+) T cells during the acute phase of infection is crucial to design therapies for the control of early human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication. Here, we measured early changes in CD4(+) and CD8(+) T cells in the peripheral blood (PB), bone marrow (BM), and axillary lymph node (ALN) tissue of rhesus macaques infected with SIV(MAC)251. At 21 days after infection, all tissues showed a statistically significant loss of CD4(+) T cells along with immune activation of CD8(+) T cells in PB and ALN tissue. Twenty-eight different cytokines/chemokines were quantified in either anti-CD3/28 antibody-or staphylococcal enterotoxin B-stimulated single-positive CD4(+) and CD8(+) T cells. PB CD4(+) T cells produced predominantly interleukin-2 (IL-2), whereas CD4(+) and CD8(+) T-cell subsets in tissues produced beta-chemokines both before and 21 days after SIV infection. Tissues generally exhibited massive upregulation of many cytokines/chemokines following infection, possibly in an attempt to mitigate the loss of CD4(+) T cells. There was no evidence of a T-helper 1 (T(H)1)-to-T(H)2 shift in CD4(+) T cells or a T-cytotoxic 1 (T(C)1)-to-T(C)2 cytokine shift in CD8(+) T cells in PB, BM, and ALN T-cell subsets during the acute phase of SIV infection. Despite the upregulation of several important effector cytokines/chemokines (IL-2, IL-12, IL-17, gamma interferon, granulocyte-macrophage colony-stimulating factor) by CD4(+) and CD8(+) T cells, upregulation of beta-chemokines (CCL2 and CCL22), basic fibroblast growth factor (FGF-basic), hepatocyte growth factor (HGF), and migration inhibition factor (MIF) may provide a poor prognosis either by inducing increased virus replication or by other unknown mechanisms. Therefore, drugs targeting beta-chemokines (CCL2 and CCL22), FGF-basic, HGF, or MIF might be important for developing effective vaccines and therapeutics against HIV.