Mass transfer and performance of membrane-less micro fuel cell: A review

被引:70
作者
Nasharudin, M. N. [1 ,3 ]
Kamarudin, S. K. [1 ,2 ]
Hasran, U. A. [1 ]
Masdar, M. S. [2 ]
机构
[1] Univ Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Chem & Proc Engn, Ukm Bangi 43600, Selangor, Malaysia
[3] Univ Malaysia Pahang, Fac Chem Engn & Nat Resources, Pahang 26300, Malaysia
关键词
Mass transport; Laminar flow; Membrane-less fuel cell; Microfluidic fuel cell; MULTIWALLED CARBON NANOTUBES; PROTON-EXCHANGE MEMBRANE; GLUCOSE BIOFUEL CELL; LAMINAR-FLOW; ALKALINE; ELECTRODE; DESIGN; PLANAR; CATALYST; FABRICATION;
D O I
10.1016/j.ijhydene.2013.09.135
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Membrane-less micro fuel cells (MMFCs) are high potential alternative power sources compared to conventional batteries. They use the advantage of laminar flow without the presence of a membrane to separate the anode and the cathode. This article is a wide-ranging review of recent studies on mass transfer, performance, modelling advances and future opportunity in MMFCs research. The discussion focuses on the critical factors that limit the performance of MMFCs. Because MMFCs are diffusion-limited, most of this review focuses on design considerations to enhance the power density output. Moreover, the current status of computational modelling for MMFC systems to upgrade the cell performance will be presented. The review also identifies the challenges and opportunities available for increasing cell performance and making the MMFC a practical application device in the future. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1039 / 1055
页数:17
相关论文
共 92 条
[71]  
Sharp KV, 2002, CRC HDB MEMS
[72]   Effects of reactant crossover and electrode dimensions on the performance of a microfluidic based laminar flow fuel cell [J].
Sprague, Isaac B. ;
Byun, Doyoung ;
Dutta, Prashanta .
ELECTROCHIMICA ACTA, 2010, 55 (28) :8579-8589
[73]   Characterization of microfluidic fuel cell based on multiple laminar flow [J].
Sun, M. H. ;
Casquillas, G. Velve ;
Guo, S. S. ;
Shi, J. ;
Ji, H. ;
Ouyang, Q. ;
Chen, Y. .
MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) :1182-1185
[74]   Design rules for electrode arrangement in an air-breathing alkaline direct methanol laminar flow fuel cell [J].
Thorson, Michael R. ;
Brushett, Fikile R. ;
Timberg, Chris J. ;
Kenis, Paul J. A. .
JOURNAL OF POWER SOURCES, 2012, 218 :28-33
[75]   Development of a membraneless ethanol/oxygen biofuel cell [J].
Topcagic, S ;
Minteer, SD .
ELECTROCHIMICA ACTA, 2006, 51 (11) :2168-2172
[76]   Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells [J].
Tüber, K ;
Oedegaard, A ;
Hermann, M ;
Hebling, C .
JOURNAL OF POWER SOURCES, 2004, 131 (1-2) :175-181
[77]   HIGH-PERFORMANCE HEAT SINKING FOR VLSI [J].
TUCKERMAN, DB ;
PEASE, RFW .
ELECTRON DEVICE LETTERS, 1981, 2 (05) :126-129
[78]   Modeling of an air cathode for microfluidic fuel cells: Transport and polarization behaviors [J].
Wang, Huizhi ;
Leung, Dennis Y. C. ;
Xuan, Jin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (22) :14704-14718
[79]   Flow and thermal characteristics of offset branching network [J].
Wang, Xiang-Qi ;
Xu, Peng ;
Mujumdar, Arun S. ;
Yap, Christopher .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (02) :272-280
[80]   The scaling laws of transport properties for fractal-like tree networks [J].
Xu, Peng ;
Yu, Boming .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (10)