CAT(k)-spaces, weak convergence and fixed points

被引:136
作者
Espinola, Rafa [1 ]
Fernandez-Leon, Aurora [1 ]
机构
[1] Univ Seville, Dept Anal Matemat, E-41080 Seville, Spain
关键词
CAT(k) spaces; Normal structure; Delta-convergence; Kadec-Klee property; Fixed points; Uniformly lipschitzian mappings; MAPPINGS; SPACES; CAT(0);
D O I
10.1016/j.jmaa.2008.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that some of the recent results on fixed point for CAT(0) spaces still hold true for CAT(1) spaces, and so for any CAT(k) 'space, under natural boundedness conditions. We also introduce a new notion of convergence in geodesic spaces which is related to the Delta-convergence and applied to study some aspects on the geometry of CAT(0) spaces. At this point, two recently posed questions in [W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (12) (2008) 3689-3696] are answered in the negative. The work finishes with the study of the Lifsic characteristic and property (P) of Lim-Xu to derive fixed point results for uniformly lipschitzian mappings in CAT(k) spaces. A conjecture raised in [S. Dhompongsa, W.A. Kirk, B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Anal. 65 (2006) 762-772] on the Lifsic characteristic function of CAT(k) spaces is solved in the positive. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:410 / 427
页数:18
相关论文
共 19 条
[1]  
[Anonymous], 1999, METRIC SPACES NONPOS
[2]  
Burago D., 2001, GRAD STUD MATH, V33
[3]   Fixed points of uniformly lipschitzian mappings [J].
Dhompongsa, S. ;
Kirk, W. A. ;
Sims, Brailey .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :762-772
[4]   Lim's theorems for multivalued mappings in CAT(0) spaces [J].
Dhompongsa, S ;
Kaewkhao, A ;
Panyanak, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :478-487
[5]   Fixed point theory for almost convex functions [J].
Garcia-Falset, J ;
Llorens-Fuster, E ;
Sims, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (05) :601-608
[6]  
Goebel K., 1984, UNIFORM CONVEXITY HY
[7]  
Goebel K., 1990, Topics in Metric Fixed Point Theory
[8]  
GROMOV M, 1984, SPACES PROGR MATH, V152
[9]  
Khamsi M.A., 2001, An Introduction to Metric Spaces and Fixed Point Theory
[10]   A concept of convergence in geodesic spaces [J].
Kirk, W. A. ;
Panyanak, B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) :3689-3696