Stochastic density functional theory at finite temperatures

被引:58
作者
Cytter, Yael [1 ,2 ]
Rabani, Eran [3 ,4 ,5 ]
Neuhauser, Daniel [6 ]
Boer, Roi [1 ,2 ]
机构
[1] Hebrew Univ Jerusalem, Fritz Haber Ctr Mol Dynam, IL-9190401 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Inst Chem, IL-9190401 Jerusalem, Israel
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[5] Tel Aviv Univ, Raymond & Beverly Sackler Ctr Computat Mol & Mat, IL-69978 Tel Aviv, Israel
[6] Univ Calif Los Angeles, Dept Chem, Los Angeles, CA 90095 USA
关键词
ENERGIES; TRANSPORT; HYDROGEN; SYSTEMS; MATRIX; WATER;
D O I
10.1103/PhysRevB.97.115207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulations in the warm dense matter regime using finite temperature Kohn-Sham density functional theory (FT-KS-DFT), while frequently used, are computationally expensive due to the partial occupation of a very large number of high-energy KS eigenstates which are obtained from subspace diagonalization. We have developed a stochastic method for applying FT-KS-DFT, that overcomes the bottleneck of calculating the occupied KS orbitals by directly obtaining the density from the KS Hamiltonian. The proposed algorithm scales as O(NT-1) and is compared with the high-temperature limit scaling O((NT3)-T-3) of the deterministic approach, where N is the system size (number of electrons, volume, etc.) and T is the temperature. The method has been implemented in a plane-waves code within the local density approximation (LDA); we demonstrate its efficiency, statistical errors, and bias in the estimation of the free energy per electron for a diamond structure silicon. The bias is small compared to the fluctuations and is independent of system size. In addition to calculating the free energy itself, one can also use the method to calculate its derivatives and obtain the equations of state.
引用
收藏
页数:9
相关论文
共 64 条
[1]   AB-INITIO CALCULATION OF THE SOUND-VELOCITY OF DENSE HYDROGEN - IMPLICATIONS FOR MODELS OF JUPITER [J].
ALAVI, A ;
PARRINELLO, M ;
FRENKEL, D .
SCIENCE, 1995, 269 (5228) :1252-1254
[2]   The Electron Transport Coefficients of Boron and Silicon Plasma [J].
Apfelbaum, E. M. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2013, 53 (4-5) :317-325
[3]   Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory [J].
Arnon, Eitam ;
Rabani, Eran ;
Neuhauser, Daniel ;
Baer, Roi .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (22)
[4]   X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition [J].
Baczewski, A. D. ;
Shulenburger, L. ;
Desjarlais, M. P. ;
Hansen, S. B. ;
Magyar, R. J. .
PHYSICAL REVIEW LETTERS, 2016, 116 (11)
[5]   Sparsity of the density matrix in Kohn-Sham density functional theory and an assessment of linear system-size scaling methods [J].
Baer, R ;
HeadGordon, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :3962-3965
[6]   Self-Averaging Stochastic Kohn-Sham Density-Functional Theory [J].
Baer, Roi ;
Neuhauser, Daniel ;
Rabani, Eran .
PHYSICAL REVIEW LETTERS, 2013, 111 (10)
[7]   Planetary Ices and the Linear Mixing Approximation [J].
Bethkenhagen, M. ;
Meyer, E. R. ;
Hamel, S. ;
Nettelmann, N. ;
French, M. ;
Scheibe, L. ;
Ticknor, C. ;
Collins, L. A. ;
Kress, J. D. ;
Fortney, J. J. ;
Redmer, R. .
ASTROPHYSICAL JOURNAL, 2017, 848 (01)
[8]  
Bohm G., 2010, INTRO STAT DATA ANAL, V1
[9]  
Brown E., 2014, FRONTIERS CHALLENGES, Ved, ppp 123
[10]   Efficient formalism for warm dense matter simulations [J].
Cangi, Attila ;
Pribram-Jones, Aurora .
PHYSICAL REVIEW B, 2015, 92 (16)