Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion

被引:25
作者
Li, C. K. [1 ]
Petrasso, R. D. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.2178780
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Energy deposition of MeV electrons in dense plasmas, important for fast ignition in inertial confinement fusion, is modeled analytically. It is shown that classical stopping and scattering dominate electron transport and energy deposition when the electrons reach the dense plasmas in the cores of compressed targets, while "anomalous" stopping associated with self-generated fields and micro-instabilities (suggested by previous simulations) might initially play an important role in the lower-density plasmas outside the dense core. For MeV electrons in precompressed deuterium-tritium fast-ignition targets, the initial penetration results in approximately uniform energy deposition but the latter stages of penetration involve mutual couplings of energy loss, straggling, and blooming that lead to enhanced, nonuniform energy deposition. This model can be used for quantitatively assessing ignition requirements for fast ignition. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Ion beam requirements for fast ignition of inertial fusion targets [J].
Honrubia, J. J. ;
Murakami, M. .
PHYSICS OF PLASMAS, 2015, 22 (01)
[42]   High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion -: art. no. 110702 [J].
Betti, R ;
Zhou, C .
PHYSICS OF PLASMAS, 2005, 12 (11) :1-4
[43]   BACK SCATTERING OF ELECTRONS FROM THE INERTIAL CONFINEMENT FUSION (ICF) TARGETS [J].
SAYASOV, Y .
HELVETICA PHYSICA ACTA, 1984, 57 (04) :524-526
[44]   INERTIAL CONFINEMENT FUSION TARGETS [J].
NUCKOLLS, JH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (04) :542-542
[45]   Study of antiprotons as drivers in inertial confinement fusion by fast ignition method [J].
Azizi, Maryam ;
Khanbabaei, Babak .
PHYSICA SCRIPTA, 2023, 98 (09)
[46]   The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme [J].
Lindl, JD ;
Hammel, BA ;
Logan, BG ;
Meyerhofer, DD ;
Payne, SA ;
Sethian, JD .
PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 :A217-A234
[47]   Diagnosing inertial confinement fusion ignition [J].
Moore, A. S. ;
Divol, L. ;
Bachmann, B. ;
Bionta, R. ;
Bradley, D. ;
Casey, D. T. ;
Celliers, P. ;
Chen, H. ;
Do, A. ;
Dewald, E. ;
Eckart, M. ;
Fittinghoff, D. ;
Frenje, J. ;
Gatu-Johnson, M. ;
Geppert-Kleinrath, H. ;
Geppert-Kleinrath, V. ;
Grim, G. ;
Hahn, K. ;
Hohenberger, M. ;
Holder, J. ;
Hurricane, O. ;
Izumi, N. ;
Kerr, S. ;
Khan, S. F. ;
Kilkenny, J. D. ;
Kim, Y. ;
Kozioziemski, B. ;
Lemos, N. ;
MacPhee, A. G. ;
Michel, P. ;
Millot, M. ;
Meaney, K. D. ;
Nagel, S. ;
Pak, A. ;
Ralph, J. E. ;
Ross, J. S. ;
Rubery, M. S. ;
Schlossberg, D. J. ;
Smalyuk, V. ;
Swadling, G. ;
Tommasini, R. ;
Trosseille, C. ;
Zylstra, A. B. ;
Mackinnon, A. ;
Moody, J. D. ;
Landen, O. L. ;
Town, R. .
NUCLEAR FUSION, 2024, 64 (10)
[48]   Fast ignition of fusion targets by laser-driven electrons [J].
Honrubia, J. J. ;
Meyer-ter-Vehn, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (01)
[49]   Progress on the physics of ignition for radiation driven inertial confinement fusion (ICF) targets [J].
Lindl, JD ;
Marinak, MM .
FUSION ENERGY 1996, VOL 3, 1997, :43-56
[50]   Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments [J].
Zhang Zhan-Wen ;
Qi Xiao-Bo ;
Li Bo .
ACTA PHYSICA SINICA, 2012, 61 (14)