Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion

被引:25
作者
Li, C. K. [1 ]
Petrasso, R. D. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.2178780
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Energy deposition of MeV electrons in dense plasmas, important for fast ignition in inertial confinement fusion, is modeled analytically. It is shown that classical stopping and scattering dominate electron transport and energy deposition when the electrons reach the dense plasmas in the cores of compressed targets, while "anomalous" stopping associated with self-generated fields and micro-instabilities (suggested by previous simulations) might initially play an important role in the lower-density plasmas outside the dense core. For MeV electrons in precompressed deuterium-tritium fast-ignition targets, the initial penetration results in approximately uniform energy deposition but the latter stages of penetration involve mutual couplings of energy loss, straggling, and blooming that lead to enhanced, nonuniform energy deposition. This model can be used for quantitatively assessing ignition requirements for fast ignition. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Approaches to fast ignition in inertial confinement fusion at Ile, Osaka [J].
Kato, Y ;
Kitagawa, Y ;
Kodama, R ;
Takabe, H ;
Fujita, H ;
Jitsuno, T ;
Kanabe, T ;
Nakatsuka, M ;
Tanaka, KA ;
Shiraga, H ;
Sawai, K ;
Miyamoto, S ;
Honda, M ;
Nakai, S ;
Mima, K ;
Sakagami, H ;
Yamanaka, C .
FUSION ENERGY 1996, VOL 3, 1997, :85-94
[32]   Ignition criteria for x-ray fast ignition inertial confinement fusion [J].
Lee, J. G. ;
Robinson, A. P. L. ;
Pasley, J. .
PHYSICS OF PLASMAS, 2020, 27 (04)
[33]   Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets [J].
Borisenko, NG ;
Akunets, AA ;
Bushuev, VS ;
Dorogotovtsev, VM ;
Merkuliev, YA .
LASER AND PARTICLE BEAMS, 2003, 21 (04) :505-509
[34]   Ignition condition and gain prediction for perturbed inertial confinement fusion targets [J].
Kishony, R ;
Shvarts, D .
PHYSICS OF PLASMAS, 2001, 8 (11) :4925-4936
[35]   Interaction physics for the shock ignition scheme of inertial confinement fusion targets [J].
Depierreux, S. ;
Goyon, C. ;
Lewis, K. ;
Bandulet, H. ;
Michel, D. T. ;
Loisel, G. ;
Yahia, V. ;
Tassin, V. ;
Stenz, C. ;
Borisenko, N. G. ;
Nazarov, W. ;
Limpouch, J. ;
Masson-Laborde, P. E. ;
Loiseau, P. ;
Casanova, M. ;
Nicolai, Ph ;
Hueller, S. ;
Pesme, D. ;
Riconda, C. ;
Tikhonchuk, V. T. ;
Labaune, C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
[36]   Simulation of heating-compressed fast-ignition cores by petawatt laser-generated electrons [J].
Mehlhorn, T. A. ;
Campbell, R. B. ;
Kodama, R. ;
Tanaka, K. A. ;
Welch, D. R. ;
Slutz, S. A. ;
Vesey, R. A. ;
Hanson, D. L. ;
Cuneo, M. E. ;
Porter, J. L. .
JOURNAL DE PHYSIQUE IV, 2006, 133 :391-395
[37]   Simulation of heating-compressed fast-ignition cores by Petawatt laser-generated electrons [J].
Campbell, RB ;
Kodama, R ;
Mehlhorn, TA ;
Tanaka, KA ;
Welch, DR .
PHYSICAL REVIEW LETTERS, 2005, 94 (05)
[38]   Studies on shock ignition targets for inertial fusion energy [J].
Atzeni, S. ;
Schiavi, A. ;
Marocchino, A. ;
Giannini, A. ;
Mancini, A. ;
Temporal, M. .
IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
[39]   Studies on Shock Ignition Targets for Inertial Fusion Energy [J].
Atzeni, Stefano ;
Marocchino, Alberto ;
Schiavi, Angelo ;
Schurtz, Guy .
2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
[40]   Gain curves and hydrodynamic simulations of ignition and burn for direct-drive fast-ignition fusion targets [J].
Solodov, A. A. ;
Betti, R. ;
Delettrez, J. A. ;
Zhou, C. D. .
PHYSICS OF PLASMAS, 2007, 14 (06)