Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion

被引:25
作者
Li, C. K. [1 ]
Petrasso, R. D. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.2178780
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Energy deposition of MeV electrons in dense plasmas, important for fast ignition in inertial confinement fusion, is modeled analytically. It is shown that classical stopping and scattering dominate electron transport and energy deposition when the electrons reach the dense plasmas in the cores of compressed targets, while "anomalous" stopping associated with self-generated fields and micro-instabilities (suggested by previous simulations) might initially play an important role in the lower-density plasmas outside the dense core. For MeV electrons in precompressed deuterium-tritium fast-ignition targets, the initial penetration results in approximately uniform energy deposition but the latter stages of penetration involve mutual couplings of energy loss, straggling, and blooming that lead to enhanced, nonuniform energy deposition. This model can be used for quantitatively assessing ignition requirements for fast ignition. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Fast ignition schemes for inertial confinement fusion [J].
Deutsch, C .
VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2003, 57 (307) :158-+
[22]   Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams [J].
Temporal, Mauro .
PHYSICS OF PLASMAS, 2006, 13 (12)
[23]   Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets [J].
Jarrott, L. C. ;
Wei, M. S. ;
McGuffey, C. ;
Solodov, A. A. ;
Theobald, W. ;
Qiao, B. ;
Stoeckl, C. ;
Betti, R. ;
Chen, H. ;
Delettrez, J. ;
Doppner, T. ;
Giraldez, E. M. ;
Glebov, V. Y. ;
Habara, H. ;
Iwawaki, T. ;
Key, M. H. ;
Luo, R. W. ;
Marshall, F. J. ;
McLean, H. S. ;
Mileham, C. ;
Patel, P. K. ;
Santos, J. J. ;
Sawada, H. ;
Stephens, R. B. ;
Yabuuchi, T. ;
Beg, F. N. .
NATURE PHYSICS, 2016, 12 (05) :499-+
[24]   Inertial-confinement fusion with fast ignition -: Discussion [J].
Robinson, DC ;
Willi, O ;
Lawson, JD ;
Little, EA ;
Zweben, S ;
Todd, TN .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1752) :574-574
[25]   Fast Ignition for Inertial Fusion Energy [J].
Stephens, RB .
18TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 1999, :157-159
[26]   Energy deposition of fast electrons in fast ignition [J].
Wu, Sizhong ;
Zhang, Hua ;
Zhou, Cangtao ;
Wu, Junfeng ;
Cai, Hongbo ;
Cao, Lihua ;
He, Minqing ;
Zhu, Shaoping ;
He, Xiantu .
Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2015, 27 (03)
[27]   Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets [J].
Kemp, A ;
Meyer-ter-Vehn, J ;
Atzeni, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3336-3339
[28]   Energy enhancement for deuteron beam fast ignition of a precompressed inertial confinement fusion target [J].
Yang, Xiaoling ;
Miley, George H. ;
Flippo, Kirk A. ;
Hora, Heinrich .
PHYSICS OF PLASMAS, 2011, 18 (03)
[29]   Heat wave fast ignition in inertial confinement energy [J].
Shalom Eliezer ;
Shirly Vinikman Pinhasi .
HighPowerLaserScienceandEngineering, 2013, 1 (01) :44-49
[30]   Heat wave fast ignition in inertial confinement energy [J].
Eliezer, Shalom ;
Pinhasi, Shirly Vinikman .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2013, 1 (01) :44-49