Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion

被引:22
作者
Li, C. K. [1 ]
Petrasso, R. D. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.2178780
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Energy deposition of MeV electrons in dense plasmas, important for fast ignition in inertial confinement fusion, is modeled analytically. It is shown that classical stopping and scattering dominate electron transport and energy deposition when the electrons reach the dense plasmas in the cores of compressed targets, while "anomalous" stopping associated with self-generated fields and micro-instabilities (suggested by previous simulations) might initially play an important role in the lower-density plasmas outside the dense core. For MeV electrons in precompressed deuterium-tritium fast-ignition targets, the initial penetration results in approximately uniform energy deposition but the latter stages of penetration involve mutual couplings of energy loss, straggling, and blooming that lead to enhanced, nonuniform energy deposition. This model can be used for quantitatively assessing ignition requirements for fast ignition. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Antiproton fast ignition for inertial confinement fusion
    Perkins, LJ
    FUSION TECHNOLOGY, 1999, 36 (02): : 219 - 233
  • [22] Fast ignition schemes for inertial confinement fusion
    Deutsch, C
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2003, 57 (307): : 158 - +
  • [23] Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams
    Temporal, Mauro
    PHYSICS OF PLASMAS, 2006, 13 (12)
  • [24] Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets
    Jarrott L.C.
    Wei M.S.
    McGuffey C.
    Solodov A.A.
    Theobald W.
    Qiao B.
    Stoeckl C.
    Betti R.
    Chen H.
    Delettrez J.
    Döppner T.
    Giraldez E.M.
    Glebov V.Y.
    Habara H.
    Iwawaki T.
    Key M.H.
    Luo R.W.
    Marshall F.J.
    Mclean H.S.
    Mileham C.
    Patel P.K.
    Santos J.J.
    Sawada H.
    Stephens R.B.
    Yabuuchi T.
    Beg F.N.
    Nature Physics, 2016, 12 (5) : 499 - 504
  • [25] Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets
    Jarrott, L. C.
    Wei, M. S.
    McGuffey, C.
    Solodov, A. A.
    Theobald, W.
    Qiao, B.
    Stoeckl, C.
    Betti, R.
    Chen, H.
    Delettrez, J.
    Doppner, T.
    Giraldez, E. M.
    Glebov, V. Y.
    Habara, H.
    Iwawaki, T.
    Key, M. H.
    Luo, R. W.
    Marshall, F. J.
    McLean, H. S.
    Mileham, C.
    Patel, P. K.
    Santos, J. J.
    Sawada, H.
    Stephens, R. B.
    Yabuuchi, T.
    Beg, F. N.
    NATURE PHYSICS, 2016, 12 (05) : 499 - +
  • [26] Inertial-confinement fusion with fast ignition -: Discussion
    Robinson, DC
    Willi, O
    Lawson, JD
    Little, EA
    Zweben, S
    Todd, TN
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1752): : 574 - 574
  • [27] Fast Ignition for Inertial Fusion Energy
    Stephens, RB
    18TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 1999, : 157 - 159
  • [28] Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets
    Kemp, A
    Meyer-ter-Vehn, J
    Atzeni, S
    PHYSICAL REVIEW LETTERS, 2001, 86 (15) : 3336 - 3339
  • [29] Energy enhancement for deuteron beam fast ignition of a precompressed inertial confinement fusion target
    Yang, Xiaoling
    Miley, George H.
    Flippo, Kirk A.
    Hora, Heinrich
    PHYSICS OF PLASMAS, 2011, 18 (03)
  • [30] Heat wave fast ignition in inertial confinement energy
    Shalom Eliezer
    Shirly Vinikman Pinhasi
    High Power Laser Science and Engineering, 2013, 1 (01) : 44 - 49