Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion

被引:22
|
作者
Li, C. K. [1 ]
Petrasso, R. D. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.2178780
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Energy deposition of MeV electrons in dense plasmas, important for fast ignition in inertial confinement fusion, is modeled analytically. It is shown that classical stopping and scattering dominate electron transport and energy deposition when the electrons reach the dense plasmas in the cores of compressed targets, while "anomalous" stopping associated with self-generated fields and micro-instabilities (suggested by previous simulations) might initially play an important role in the lower-density plasmas outside the dense core. For MeV electrons in precompressed deuterium-tritium fast-ignition targets, the initial penetration results in approximately uniform energy deposition but the latter stages of penetration involve mutual couplings of energy loss, straggling, and blooming that lead to enhanced, nonuniform energy deposition. This model can be used for quantitatively assessing ignition requirements for fast ignition. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Energy deposition of multi-MeV protons in compressed targets of fast-ignition inertial confinement fusion
    Mahdavi, M.
    Koohrokhi, T.
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [2] Fast ignition of asymmetrically compressed targets for inertial confinement fusion
    S. Yu. Gus’kov
    N. N. Demchenko
    N. V. Zmitrenko
    P. A. Kuchugov
    V. B. Rozanov
    R. V. Stepanov
    R. A. Yakhin
    JETP Letters, 2017, 105 : 402 - 407
  • [3] Fast ignition of asymmetrically compressed targets for inertial confinement fusion
    Gus'kov, S. Yu.
    Demchenko, N. N.
    Zmitrenko, N. V.
    Kuchugov, P. A.
    Rozanov, V. B.
    Stepanov, R. V.
    Yakhin, R. A.
    JETP LETTERS, 2017, 105 (06) : 402 - 407
  • [4] Fast ignition of inertial confinement fusion targets
    Gus'kov, S. Yu.
    PLASMA PHYSICS REPORTS, 2013, 39 (01) : 1 - 50
  • [5] Fast ignition of inertial confinement fusion targets
    S. Yu. Gus’kov
    Plasma Physics Reports, 2013, 39 : 1 - 50
  • [6] Low-adiabat implosions for fast-ignition inertial confinement fusion
    Betti, R.
    Zhou, C.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 379 - 383
  • [7] Directly driven magnetized fast-ignition targets with steep density gradients for inertial fusion energy
    Sefkow, A. B.
    Logan, B. G.
    Tabak, M.
    PHYSICS OF PLASMAS, 2024, 31 (05)
  • [8] Ignition energy scaling of inertial confinement fusion targets
    Basko, MM
    Johner, J
    NUCLEAR FUSION, 1998, 38 (12) : 1779 - 1788
  • [9] Fusion space propulsion using fast-ignition inertial confinement fusion (FI-ICF)
    Miley, George H.
    Yang, Xiaoling
    Flippo, Kirk A.
    Hora, Heinrich
    JBIS - Journal of the British Interplanetary Society, 2010, 63 (9-10): : 387 - 390
  • [10] Limitation on Prepulse Level for Cone-Guided Fast-Ignition Inertial Confinement Fusion
    MacPhee, A. G.
    Divol, L.
    Kemp, A. J.
    Akli, K. U.
    Beg, F. N.
    Chen, C. D.
    Chen, H.
    Hey, D. S.
    Fedosejevs, R. J.
    Freeman, R. R.
    Henesian, M.
    Key, M. H.
    Le Pape, S.
    Link, A.
    Ma, T.
    Mackinnon, A. J.
    Ovchinnikov, V. M.
    Patel, P. K.
    Phillips, T. W.
    Stephens, R. B.
    Tabak, M.
    Town, R.
    Tsui, Y. Y.
    Van Woerkom, L. D.
    Wei, M. S.
    Wilks, S. C.
    PHYSICAL REVIEW LETTERS, 2010, 104 (05)