WEAK AMENABILITY OF COMMUTATIVE BEURLING ALGEBRAS

被引:0
作者
Zhang, Yong [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Derivation; weak amenability; 2-weak amenability; weight; locally compact Abelian group; DERIVATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a locally compact Abelian group G and a continuous weight function w on G we show that the Beurling algebra L-1(G, w) is weakly amenable if and only if there is no nontrivial continuous group homomorphism phi: G -> C such that sup t is an element of G vertical bar phi(t)vertical bar/w(t)w(t(-1)) < infinity. Let <(w)over cap>(t) = lim sup(s ->infinity) w(ts)/w(s) (t is an element of G). Then L-1 (G,w) is 2-weakly amenable if there is a constant m > 0 such that lim inf(n ->infinity) w(t(n))(w) over cap (t(-n))/n <= m for all t is an element of G.
引用
收藏
页码:1649 / 1661
页数:13
相关论文
共 18 条
[1]   Amenability properties of the centres of group algebras [J].
Azimifard, Ahmadreza ;
Samei, Ebrahim ;
Spronk, Nico .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (05) :1544-1564
[2]  
BADE WG, 1987, P LOND MATH SOC, V55, P359
[3]   A Beurling algebra is semisimple: An elementary proof [J].
Bhatt, SJ ;
Dedania, HV .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (01) :91-93
[4]   Approximate and pseudo-amenability of various classes of Banach algebras [J].
Choi, Y. ;
Ghahramani, F. ;
Zhang, Y. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (10) :3158-3191
[5]  
Dales H. G., 2000, LONDON MATH SOC MONO, V24
[6]  
Dales HG, 2005, MEM AM MATH SOC, V177, P1
[7]  
Dales HG, 1998, STUD MATH, V128, P19
[8]  
GAUDRY GI, 1969, P LOND MATH SOC, V19, P327
[9]  
Ghahramani F., 2004, INT J PURE APPL MATH, V16, P75
[10]   A CHARACTERIZATION OF WEAKLY AMENABLE BANACH-ALGEBRAS [J].
GROENBAEK, N .
STUDIA MATHEMATICA, 1989, 94 (02) :149-162