A GPU-Based Statistical Framework for Moving Object Segmentation: Implementation, Analysis and Applications
被引:1
作者:
论文数: 引用数:
h-index:
机构:
Cuzzocrea, Alfredo
[1
,2
]
Mumolo, Enzo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Trieste, DIA Dept, Trieste, ItalyUniv Trieste, DIA Dept, Trieste, Italy
Mumolo, Enzo
[1
]
Moro, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Chuo Univ, Tokyo 112, JapanUniv Trieste, DIA Dept, Trieste, Italy
Moro, Alessandro
[3
]
Umeda, Kazunori
论文数: 0引用数: 0
h-index: 0
机构:
Chuo Univ, Tokyo 112, JapanUniv Trieste, DIA Dept, Trieste, Italy
Umeda, Kazunori
[3
]
机构:
[1] Univ Trieste, DIA Dept, Trieste, Italy
[2] CNR, ICAR, Arcavacata Di Rende, Italy
[3] Chuo Univ, Tokyo 112, Japan
来源:
INTERNET AND DISTRIBUTED COMPUTING SYSTEMS, IDCS 2015
|
2015年
/
9258卷
关键词:
D O I:
10.1007/978-3-319-23237-9_19
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This paper describes a real-time implementation of a recently proposed background maintenance algorithm and reports the relative performances. Experimental results on dynamic scenes taken from a fixed camera show that the proposed parallel algorithm produces background images with an improved quality with respect to classical pixel-wise algorithms, obtaining a speedup of more than 35 times compared to CPU implementation. It is worth noting that we used both the GeForce 9 series (actually a 9800 GPU) available from the year 2008 and the GeForce 200 series (actually a 295 GPU) available from the year 2009. Finally, we show that this parallel implementation allows us to use it in real-time moving object detection application.