Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform

被引:57
作者
Ganzhorn, M. [1 ]
Salis, G. [1 ]
Egger, D. J. [1 ]
Fuhrer, A. [1 ]
Mergenthaler, M. [1 ]
Mueller, C. [1 ]
Mueller, P. [1 ]
Paredes, S. [1 ]
Pechal, M. [1 ]
Werninghaus, M. [1 ]
Filipp, S. [1 ,2 ]
机构
[1] IBM Res Zurich, IBM Quantum, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Tech Univ Munich, Munich, Germany
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
关键词
Logic gates - Qubits - Quantum theory;
D O I
10.1103/PhysRevResearch.2.033447
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The possibility to utilize different types of two-qubit gates on a single quantum computing platform adds flexibility in the decomposition of quantum algorithms. A larger hardware-native gate set may decrease the number of required gates, provided that all gates are realized with high fidelity. Here, we benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler that mediates the interaction between two superconducting qubits. Using randomized benchmarking protocols we estimate an error per gate of 0.9 +/- 0.03 and 1.3 +/- 0.4% for the CZ and the iSWAP gate, respectively. We argue that spurious ZZ-type couplings are the dominant error source for the iSWAP gate, and that phase stability of all microwave drives is of utmost importance. Such differences in the achievable fidelities for different two-qubit gates have to be taken into account when mapping quantum algorithms to real hardware.
引用
收藏
页数:18
相关论文
共 55 条
[1]  
Abrams D. M., 2019, ARXIV191204424
[2]   Effect of noise correlations on randomized benchmarking [J].
Ball, Harrison ;
Stace, Thomas M. ;
Flammia, Steven T. ;
Biercuk, Michael J. .
PHYSICAL REVIEW A, 2016, 93 (02)
[3]   Diabatic Gates for Frequency-Tunable Superconducting Qubits [J].
Barends, R. ;
Quintana, C. M. ;
Petukhov, A. G. ;
Chen, Yu ;
Kafri, D. ;
Kechedzhi, K. ;
Collins, R. ;
Naaman, O. ;
Boixo, S. ;
Arute, F. ;
Arya, K. ;
Buell, D. ;
Burkett, B. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Foxen, B. ;
Fowler, A. ;
Gidney, C. ;
Giustina, M. ;
Graff, R. ;
Huang, T. ;
Jeffrey, E. ;
Kelly, J. ;
Klimov, P. V. ;
Kostritsa, F. ;
Landhuis, D. ;
Lucero, E. ;
McEwen, M. ;
Megrant, A. ;
Mi, X. ;
Mutus, J. ;
Neeley, M. ;
Neill, C. ;
Ostby, E. ;
Roushan, P. ;
Sank, D. ;
Satzinger, K. J. ;
Vainsencher, A. ;
White, T. ;
Yao, J. ;
Yeh, P. ;
Zalcman, A. ;
Neven, H. ;
Smelyanskiy, V. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2019, 123 (21)
[4]   Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions [J].
Barkoutsos, Panagiotis Kl ;
Gonthier, Jerome F. ;
Sokolov, Igor ;
Moll, Nikolaj ;
Salis, Gian ;
Fuhrer, Andreas ;
Ganzhorn, Marc ;
Egger, Daniel J. ;
Troyer, Matthias ;
Mezzacapo, Antonio ;
Filipp, Stefan ;
Tavernelli, Ivano .
PHYSICAL REVIEW A, 2018, 98 (02)
[5]   First-order sidebands in circuit QED using qubit frequency modulation [J].
Beaudoin, Felix ;
da Silva, Marcus P. ;
Dutton, Zachary ;
Blais, Alexandre .
PHYSICAL REVIEW A, 2012, 86 (02)
[6]   Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm [J].
Bengtsson, Andreas ;
Vikstal, Pontus ;
Warren, Christopher ;
Svensson, Marika ;
Gu, Xiu ;
Kockum, Anton Frisk ;
Krantz, Philip ;
Krizan, Christian ;
Shiri, Daryoush ;
Svensson, Ida-Maria ;
Tancredi, Giovanna ;
Johansson, Goran ;
Delsing, Per ;
Ferrini, Giulia ;
Bylander, Jonas .
PHYSICAL REVIEW APPLIED, 2020, 14 (03)
[7]   Parametric coupling for superconducting qubits [J].
Bertet, P ;
Harmans, CJPM ;
Mooij, JE .
PHYSICAL REVIEW B, 2006, 73 (06)
[8]   Parametrically Activated Entangling Gates Using Transmon Qubits [J].
Caldwell, S. A. ;
Didier, N. ;
Ryan, C. A. ;
Sete, E. A. ;
Hudson, A. ;
Karalekas, P. ;
Manenti, R. ;
da Silva, M. P. ;
Sinclair, R. ;
Acala, E. ;
Alidoust, N. ;
Angeles, J. ;
Bestwick, A. ;
Block, M. ;
Bloom, B. ;
Bradley, A. ;
Bui, C. ;
Capelluto, L. ;
Chilcott, R. ;
Cordova, J. ;
Crossman, G. ;
Curtis, M. ;
Deshpande, S. ;
El Bouayadi, T. ;
Girshovich, D. ;
Hong, S. ;
Kuang, K. ;
Lenihan, M. ;
Manning, T. ;
Marchenkov, A. ;
Marshall, J. ;
Maydra, R. ;
Mohan, Y. ;
O'Brien, W. ;
Osborn, C. ;
Otterbach, J. ;
Papageorge, A. ;
Paquette, J. -P. ;
Pelstring, M. ;
Polloreno, A. ;
Prawiroatmodjo, G. ;
Rawat, V. ;
Reagor, M. ;
Renzas, R. ;
Rubin, N. ;
Russell, D. ;
Rust, M. ;
Scarabelli, D. ;
Scheer, M. ;
Selvanayagam, M. .
PHYSICAL REVIEW APPLIED, 2018, 10 (03)
[9]   Qubit Architecture with High Coherence and Fast Tunable Coupling [J].
Chen, Yu ;
Neill, C. ;
Roushan, P. ;
Leung, N. ;
Fang, M. ;
Barends, R. ;
Kelly, J. ;
Campbell, B. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Megrant, A. ;
Mutus, J. Y. ;
O'Malley, P. J. J. ;
Quintana, C. M. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Geller, Michael R. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (22)
[10]   Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits [J].
Chow, Jerry M. ;
Corcoles, A. D. ;
Gambetta, Jay M. ;
Rigetti, Chad ;
Johnson, B. R. ;
Smolin, John A. ;
Rozen, J. R. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (08)