Connectedness of the isospectral manifold for one-dimensional half-line Schrodinger operators

被引:5
作者
Gesztesy, F [1 ]
Simon, B
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
isospectral sets of potentials; half-line Schrodinger operators; inverse problems;
D O I
10.1023/B:JOSS.0000037217.89500.b3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let V-0\ be a real-valued function on [0,infinity) and V is an element of L-1([0, R]) for all R > 0 so that H(V-0)=- d(2)/ dx(2)+ V-0 in L-2([0,infinity)) with u(0) = 0 boundary conditions has discrete spectrum bounded from below. Let M(V-0) be the set of V so that H( V) and H(V-0) have the same spectrum. We prove that M(V-0) is connected.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 13 条
[1]  
CHELKAK D, IN PRESS COMM MATH P
[2]  
CODDINGTON EA, 1985, THEORY ORDINARY DIFF
[3]  
Dunford N., 1988, LINEAR OPERATORS 2
[4]   A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure [J].
Gesztesy, F ;
Simon, B .
ANNALS OF MATHEMATICS, 2000, 152 (02) :593-643
[5]   DIFFERENTIAL EQUATIONS WITH NON-OSCILLATORY EIGENFUNCTIONS [J].
HARTMAN, P .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (03) :697-709
[6]  
Levitan B. M., 1988, MATH USSR SB, V60, P77, DOI DOI 10.1070/SM1988V060N01ABEH003157
[7]  
Levitan B. M., 1984, Inverse Sturm-Liouville Problems
[8]  
MARCHENKO VA, 1986, OPERATOR THEORY ADV, V22
[9]   THE SPECTRAL CLASS OF THE QUANTUM-MECHANICAL HARMONIC-OSCILLATOR [J].
MCKEAN, HP ;
TRUBOWITZ, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 82 (04) :471-495
[10]   Schrodinger operators and de Branges spaces [J].
Remling, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (02) :323-394