A new parameterization of stable polynomials

被引:7
作者
Djaferis, TE [1 ]
Pepyne, DL
Cushing, DM
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
robustness; stability; stability margin;
D O I
10.1109/TAC.2002.802733
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we develop a new characterization of stable poly. nomials. Specifically, given n positive, ordered numbers (frequencies), we develop a procedure for constructing a stable degree n monic polynomial with real coefficients. This construction can be viewed as a mapping from the space of n ordered frequencies to the space of stable degree n monic polynomials. The mapping is one-one and onto, thereby giving a complete parameterization of all stable, degree n monic polynomials. We show how the result can be used to generate parameterizations of stabilizing fixed-order proper controllers for unity feedback systems. We apply these results in the development of stability margin lower bounds for systems with parameter uncertainty.
引用
收藏
页码:1546 / 1550
页数:5
相关论文
共 7 条
  • [1] Djaferis TE, 2001, IEEE DECIS CONTR P, P4388, DOI 10.1109/CDC.2001.980892
  • [2] Djaferis TE., 1995, Robust Control Design: A Polynomial Approach
  • [3] DJAFERIS TE, 2002, P AM CONTR C ANCH AK
  • [4] DOYLE J, 1992, FEEDBACK CONTROL THE
  • [5] Gantmacher F. R., 1959, THEORY MATRICES, V2
  • [6] Gantmacher F R, 1959, THEORY MATRICES, VI
  • [7] AN ELEMENTARY PROOF OF KHARITONOV STABILITY THEOREM WITH EXTENSIONS
    MINNICHELLI, RJ
    ANAGNOST, JJ
    DESOER, CA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (09) : 995 - 998