Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland

被引:22
|
作者
Hu, Lening [1 ,2 ,3 ]
Li, Shuangli [1 ,2 ]
Li, Ke [4 ]
Huang, Haiyan [1 ,2 ]
Wan, Wenxin [1 ,2 ]
Huang, Qiuhua [1 ,2 ]
Li, Qiuyan [1 ,2 ]
Li, Yafen [1 ,2 ]
Deng, Hua [1 ,2 ]
He, Tieguang [5 ]
机构
[1] Guangxi Normal Univ, Minist Educ, Key Lab Ecol & Environm Protect Rare & Endangered, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Coll Environm & Resources, Guilin 541004, Peoples R China
[3] CAGS, Inst Karst Geol, MNR & Guangxi, Key Lab Karst Dynam, Guilin 541004, Peoples R China
[4] Guilin Univ Technol, Coll Civil Engn & Architecture, Guilin 541004, Peoples R China
[5] Guangxi Acad Agr Sci, Agr Resources & Environm Res Inst, Nanning 530007, Peoples R China
基金
中国国家自然科学基金;
关键词
biochar; soil enzymes; organic carbon; straw; mineralization; first-order kinetic equation; ENZYME-ACTIVITIES; N MINERALIZATION; MICROBIAL BIOMASS; EMISSIONS; NITROGEN; RESPIRATION; LIMITATIONS; MECHANISMS; FRACTIONS; ORCHARD;
D O I
10.3390/su122410586
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To investigate the effects of biochar on soil carbon composition and transformation, the effects of 1%, 2%, and 5% mass ratios of banana and cassava straw biochar on carbon dioxide release, total organic carbon (TOC), soluble organic carbon (SOC), and enzyme activity in soil were studied in incubation experiments at a constant temperature in the laboratory. The results showed that the cumulative CO2 emissions from cassava straw were 15.82 (1% addition ratio) and 28.14 mu g center dot kg(-1) (2%), which were lower than those from banana straw, i.e., 46.77 (1%) and 59.26 mu g center dot kg(-1) (2%). After culture, the total organic carbon contents of cassava straw were 8.55 (5%), 5.27 (2%), and 3.98 mu g center dot kg(-1) (1%), which were higher than those of banana straw, i.e., 6.31 (5%), 4.23 (2%), and 3.16 mu g center dot kg(-1) (1%). The organic carbon mineralization rate in each treatment showed a trend of increasing first, then decreasing, and finally stabilizing. There was a very significant positive correlation between catalase and urease activity in soil with cassava straw biochar and between catalase activity and SOC mineralization with banana straw biochar. It plays an important role in the transformation and decomposition of organic carbon. These results show that the application of biomass carbon can significantly improve the organic carbon content and enzyme activity of farmland soil, increase the cumulative mineralization amount and mineralization rate of SOC, and thus increase the carbon sequestration capacity of soil.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] Conversion effects of farmland to Zanthoxylum bungeanum plantations on soil organic carbon mineralization in the arid valley of the upper reaches of Yangtze River, China
    Lv, Chen
    Saba, Tahseen
    Wang, Jingyan
    Hui, Wenkai
    Liu, Wanlin
    Fan, Jiangtao
    Wu, Jiahui
    Liu, Xianzhi
    Gong, Wei
    PLOS ONE, 2022, 17 (02):
  • [32] Biochar effect on the mineralization of soil organic matter
    Bruun, Sander
    EL-Zehery, Tarek
    PESQUISA AGROPECUARIA BRASILEIRA, 2012, 47 (05) : 665 - 671
  • [33] Corncob-derived biochar decelerates mineralization of native and added organic matter (AOM) in organic matter depleted alkaline soil
    Riaz, Muhammad
    Roohi, Mahnaz
    Arif, Muhammad Saleem
    Hussain, Qaiser
    Yasmeen, Tahira
    Shahzad, Tanvir
    Shahzad, Sher Muhammad
    Muhammad, Hufsa Faqeer
    Arif, Muhammad
    Khalid, Muhammad
    GEODERMA, 2017, 294 : 19 - 28
  • [34] Effects of magnesium-modified biochar on soil organic carbon mineralization in citrus orchard
    Hu, Lening
    Huang, Rui
    Zhou, Liming
    Qin, Rui
    He, Xunyang
    Deng, Hua
    Li, Ke
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [35] Impacts of biochar amendment and straw incorporation on soil heterotrophic respiration and desorption of soil organic carbon
    Wang, Xiujun
    Zhu, Zhu
    Huang, Ni
    Wu, Lipeng
    Lu, Tongping
    Hu, Zhengjiang
    GEOSCIENCE LETTERS, 2023, 10 (01)
  • [36] Effects of Biochar on Soil Aggregation and Distribution of Organic Carbon Fractions in Aggregates
    Lee, Ming-Hsi
    Chang, Ed-Haun
    Lee, Chia-Hsing
    Chen, Jyun-Yuan
    Jien, Shih-Hao
    PROCESSES, 2021, 9 (08)
  • [37] Changes in soil organic carbon and microbial community in saline soil following different forms of straw incorporation
    Fan, Ting
    Zhang, Yulin
    Hu, Kexin
    Xu, Shiqi
    Zhang, Afeng
    Xue, Shaoqi
    Han, Jiale
    Wang, Xudong
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2024, 75 (01)
  • [38] Effects of Biochar Application on Soil Organic Carbon Mineralization during Drying and Rewetting Cycles
    Xu, Gang
    Song, Jiawei
    Zhang, Yang
    Lv, Yingchun
    BIORESOURCES, 2019, 14 (04) : 9957 - 9967
  • [39] Straw is more effective than biochar in mobilizing soil organic phosphorus mineralization in saline-alkali paddy soil
    Fei, Chao
    Zhang, Shirong
    Zhang, Lin
    Ding, Xiaodong
    APPLIED SOIL ECOLOGY, 2023, 186
  • [40] Effects of Straw and Biochar Amendments on Characteristics of Soil Fungal Community and Organic Carbon Pool in Jasminum sambac Garden
    Peng J.-H.
    Lin S.-Y.
    Wang W.-Q.
    Zeng Y.
    Chen M.-C.
    Yang W.-W.
    Chen S.-C.
    Huanjing Kexue/Environmental Science, 2024, 45 (07): : 4228 - 4240