LAGRANGE MULTIPLIER APPROACH WITH OPTIMIZED FINITE DIFFERENCE STENCILS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY

被引:29
|
作者
Ito, Kazufumi [1 ]
Toivanen, Jari [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2009年 / 31卷 / 04期
关键词
American option pricing; stochastic volatility model; linear complementarity problem; finite difference method; quadratic programming; multigrid method; Lagrange method; penalty method; LINEAR COMPLEMENTARITY-PROBLEMS; SPLITTING METHODS;
D O I
10.1137/07070574X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The deterministic numerical valuation of American options under Heston's stochastic volatility model is considered. The prices are given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. A new truncation of the domain is described for small asset values, while for large asset values and variance a standard truncation is used. The finite difference discretization is constructed by numerically solving a quadratic optimization problem aiming to minimize the truncation error at each grid point. A Lagrange approach is used to treat the linear complementarity problems. Numerical examples demonstrate the accuracy and effectiveness of the proposed approach.
引用
收藏
页码:2646 / 2664
页数:19
相关论文
共 50 条
  • [21] A fast Fourier transform technique for pricing American options under stochastic volatility
    Oleksandr Zhylyevskyy
    Review of Derivatives Research, 2010, 13 : 1 - 24
  • [22] Pricing barrier options under stochastic volatility framework
    Zhai Yunfei
    Bi Xiuchun
    Zhang Shuguang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (04) : 609 - 618
  • [23] PRICING BARRIER OPTIONS UNDER STOCHASTIC VOLATILITY FRAMEWORK
    ZHAI Yunfei
    BI Xiuchun
    ZHANG Shuguang
    Journal of Systems Science & Complexity, 2013, 26 (04) : 609 - 618
  • [24] On Pricing Options Under Two Stochastic Volatility Processes
    Xie, Wenjia
    Huang, Zhongyi
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024, 14 (02) : 418 - 450
  • [25] Pricing Discrete Barrier Options Under Stochastic Volatility
    Shiraya, Kenichiro
    Takahashi, Akihiko
    Yamada, Toshihiro
    ASIA-PACIFIC FINANCIAL MARKETS, 2012, 19 (03) : 205 - 232
  • [26] Pricing vulnerable options under a stochastic volatility model
    Yang, Sung-Jin
    Lee, Min-Ku
    Kim, Jeong-Hoon
    APPLIED MATHEMATICS LETTERS, 2014, 34 : 7 - 12
  • [27] Pricing barrier options under stochastic volatility framework
    Yunfei Zhai
    Xiuchun Bi
    Shuguang Zhang
    Journal of Systems Science and Complexity, 2013, 26 : 609 - 618
  • [28] American option pricing under stochastic volatility: An efficient numerical approach
    AitSahlia F.
    Goswami M.
    Guha S.
    Computational Management Science, 2010, 7 (2) : 171 - 187
  • [29] Pricing American Options Under Stochastic Volatility Model: A Nearly-Exact Discretization-Based Approach
    Sun, Youfa
    Li, Shuqi
    Ding, Lutao
    Zhang, Guoya
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MANAGEMENT AND ENGINEERING (CME 2014), 2014, : 1689 - 1695
  • [30] Pricing for perpetual American strangle options under stochastic volatility with fast mean reversion
    Ha, Mijin
    Kim, Donghyun
    Yoon, Ji-Hun
    Choi, Sun-Yong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 227 : 41 - 57