LAGRANGE MULTIPLIER APPROACH WITH OPTIMIZED FINITE DIFFERENCE STENCILS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY

被引:29
|
作者
Ito, Kazufumi [1 ]
Toivanen, Jari [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2009年 / 31卷 / 04期
关键词
American option pricing; stochastic volatility model; linear complementarity problem; finite difference method; quadratic programming; multigrid method; Lagrange method; penalty method; LINEAR COMPLEMENTARITY-PROBLEMS; SPLITTING METHODS;
D O I
10.1137/07070574X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The deterministic numerical valuation of American options under Heston's stochastic volatility model is considered. The prices are given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. A new truncation of the domain is described for small asset values, while for large asset values and variance a standard truncation is used. The finite difference discretization is constructed by numerically solving a quadratic optimization problem aiming to minimize the truncation error at each grid point. A Lagrange approach is used to treat the linear complementarity problems. Numerical examples demonstrate the accuracy and effectiveness of the proposed approach.
引用
收藏
页码:2646 / 2664
页数:19
相关论文
共 50 条