Joint approximation by non-linear shifts of Dirichlet L-functions

被引:1
作者
Laurincikas, Antanas [1 ]
Siauciunas, Darius [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Siauliai Acad, Inst Reg Dev, P Visinskio Str 25, LT-76351 Vilnius, Lithuania
关键词
Dirichlet L-function; Gram function; Riemann zeta-function; Voronin universality theorem; ZEROS;
D O I
10.1016/j.jmaa.2022.126524
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, a theorem on the simultaneous approximation of a collection of analytic functions by non-linear shifts of Dirichlet L-functions (L(s + il(tau)(alpha 1), chi(1)),...,L(s + it(tau)(alpha tau), chi(r))) is obtained. Here t(tau) the Gram function, alpha(1),..., alpha(r) are fixed different positive numbers, and chi(1),...,chi(r) are arbitrary Dirichlet characters. Also, an example of approximation by a certain composition of the above shifts is given. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 17 条
[1]  
Bagchi B., 1981, The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series
[2]  
Billingsley P., 1968, Convergence of probability measures, DOI DOI 10.1002/9780470316962
[3]   Note about zeros in the zeta(s) function of Reimann [J].
Gram, JP .
ACTA MATHEMATICA, 1903, 27 (01) :289-304
[4]  
Karatsuba AA., 1992, The Riemann zeta-function, DOI [10.1515/9783110886146, DOI 10.1515/9783110886146]
[5]   Gram's law in the theory of the Riemann zeta-function. Part 2 [J].
Korolev, M. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 294 :S1-S78
[6]   Gram's law in the theory of the Riemann zeta-function. Part 1 [J].
Korolev, M. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 292 :S1-S146
[7]  
Laurincikas A., 2011, CHEBYSHEVSKII SB, V12, P124
[8]  
[Лауринчикас Антанас Laurincikas Antanas], 2015, [Чебышевский сборник, Chebyshevskii sbornik], V16, P205
[9]  
Mergelyan SN., 1952, USP MAT NAUK, V7, P31
[10]   Joint universality for dependent L-functions [J].
Pankowski, Lukasz .
RAMANUJAN JOURNAL, 2018, 45 (01) :181-195