Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values

被引:73
作者
Mohammed, Ahmed [1 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
关键词
p-Laplacian; Keller-Osserman condition; boundary asymptotic; uniqueness;
D O I
10.1016/j.jmaa.2006.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove boundary asymptotics to solutions of weighted p-Laplacian equations that take infinite value on the boundary of a bounded domain. Uniqueness of such solutions would then follow as a consequence. Our results extend previously known results by allowing weights that are unbounded in the domain. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:480 / 489
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 2004, COMPLEX VAR THEORY A
[2]  
[Anonymous], 1943, DIFFERENTIALUND INTE
[3]   Asymptotic behaviour of large solutions of quasilinear elliptic problems [J].
Bandle, C .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (05) :731-738
[4]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[5]  
Bieberbach L, 1915, MATH ANN, V77, P173
[6]  
CIRSTEA F, IN PRESS T AM MATH S
[7]  
CIRSTEA F, IN PRESS ASYMPTOT AN
[8]   Uniqueness of the blow-up boundary solution of logistic equations with absorbtion [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) :447-452
[9]   The influence of domain geometry in boundary blow-up elliptic problems [J].
del Pino, M ;
Letelier, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (06) :897-904
[10]  
DIAZ J, 1985, ELLIPTICS EQUATIONS, V1