Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan

被引:119
作者
Araki, Shin [1 ]
Shima, Masayuki [2 ]
Yamamoto, Kouhei [3 ]
机构
[1] Osaka Univ, Grad Sch Engn, Yamadaoka 2-1, Suita, Osaka 5650871, Japan
[2] Hyogo Coll Med, Dept Publ Hlth, Mukogawa Cho 1-1, Nishinomiya, Hyogo 6638501, Japan
[3] Kyoto Univ, Grad Sch Energy Sci, Sakyo Ku, Yoshidahonmachi, Kyoto 6068501, Japan
关键词
Air pollution; Machine learning; Distance decay effect; Prenatal exposure; Land use regression; AMBIENT AIR-POLLUTION; USE REGRESSION-MODELS; LOW-BIRTH-WEIGHT; SATELLITE; VARIABILITY; PREGNANCY; PM2.5; RISK; ASSOCIATION; POLLUTANTS;
D O I
10.1016/j.scitotenv.2018.03.324
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Adequate spatial and temporal estimates of NO2 concentrations are essential for proper prenatal exposure assessment. Here, we develop a spatiotemporal land use random forest (LURF) model of the monthly mean NO2 over four years in a metropolitan area of Japan. The overall objective is to obtain accurate NO2 estimates for use in prenatal exposure assessments. We use random forests to convey the non-linear relationship between NO2 concentrations and predictor variables, and compare the prediction accuracy with that of a linear regression. In addition, we include the distance decay effect of emission sources on NO2 concentrations for more efficient model construction. The prediction accuracy of the LURF model is evaluated through a leave-one-monitor-out cross validation. We obtain a high R-2 value of 0.79, which is better than that of the conventional land use regression model using linear regression (R-2 of 0.73). We also evaluate the LURF model via a temporal and overall cross validation and obtain R-2 values of 0.84 and 0.92, respectively. We successfully integrate temporal and spatial components into our model, which exhibits higher accuracy than spatial models constructed individually for each month. Our findings illustrate the advantage of using a LURF to model the spatiotemporal variability of NO2 concentrations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1269 / 1277
页数:9
相关论文
共 40 条
[11]   Does Ambient Air Pollution Trigger Stillbirth? [J].
Faiz, Ambarina S. ;
Rhoads, George G. ;
Demissie, Kitaw ;
Lin, Yong ;
Kruse, Lakota ;
Rich, David Q. .
EPIDEMIOLOGY, 2013, 24 (04) :538-544
[12]   Ambient Air Pollution and the Risk of Stillbirth [J].
Faiz, Ambarina S. ;
Rhoads, George G. ;
Demissie, Kitaw ;
Kruse, Lakota ;
Lin, Yong ;
Rich, David Q. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 176 (04) :308-316
[13]   Outdoor Air Pollution, Preterm Birth, and Low Birth Weight: Analysis of the World Health Organization Global Survey on Maternal and Perinatal Health [J].
Fleischer, Nancy L. ;
Merialdi, Mario ;
van Donkelaar, Aaron ;
Vadillo-Ortega, Felipe ;
Martin, Randall V. ;
Betran, Ana Pilar ;
Souza, Joao Paulo ;
O'Neill, Marie S. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2014, 122 (04) :425-430
[14]  
Fukui T., 2014, J. Jpn. Soc. Atmos. Environ., V49, P117, DOI [10.11298/taiki.49.117, DOI 10.11298/TAIKI.49.117]
[15]  
Genuer R, 2015, R J, V7, P19
[16]   Assessing the Influence of Traffic-related Air Pollution on Risk of Term Low Birth Weight on the Basis of Land-Use-based Regression Models and Measures of Air Toxics [J].
Ghosh, Jo Kay C. ;
Wilhelm, Michelle ;
Su, Jason ;
Goldberg, Daniel ;
Cockburn, Myles ;
Jerrett, Michael ;
Ritz, Beate .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (12) :1262-1274
[17]   Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions [J].
Hengl, Tomislav ;
Heuvelink, Gerard B. M. ;
Kempen, Bas ;
Leenaars, Johan G. B. ;
Walsh, Markus G. ;
Shepherd, Keith D. ;
Sila, Andrew ;
MacMillan, Robert A. ;
de Jesus, Jorge Mendes ;
Tamene, Lulseged ;
Tondoh, Jerome E. .
PLOS ONE, 2015, 10 (06)
[18]  
Hijmans R.J., 2016, raster: Geographic data analysis and modeling
[19]   Rationale and study design of the Japan environment and children's study (JECS) [J].
Kawamoto, Toshihiro ;
Nitta, Hiroshi ;
Murata, Katsuyuki ;
Toda, Eisaku ;
Tsukamoto, Naoya ;
Hasegawa, Manabu ;
Yamagata, Zentaro ;
Kayama, Fujio ;
Kishi, Reiko ;
Ohya, Yukihiro ;
Saito, Hirohisa ;
Sago, Haruhiko ;
Okuyama, Makiko ;
Ogata, Tsutomu ;
Yokoya, Susumu ;
Koresawa, Yuji ;
Shibata, Yasuyuki ;
Nakayama, Shoji ;
Michikawa, Takehiro ;
Takeuchi, Ayano ;
Satoh, Hiroshi .
BMC PUBLIC HEALTH, 2014, 14
[20]   OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution [J].
Kim, Hyun Cheol ;
Lee, Pius ;
Judd, Laura ;
Pan, Li ;
Lefer, Barry .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (03) :1111-1123