Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan

被引:119
作者
Araki, Shin [1 ]
Shima, Masayuki [2 ]
Yamamoto, Kouhei [3 ]
机构
[1] Osaka Univ, Grad Sch Engn, Yamadaoka 2-1, Suita, Osaka 5650871, Japan
[2] Hyogo Coll Med, Dept Publ Hlth, Mukogawa Cho 1-1, Nishinomiya, Hyogo 6638501, Japan
[3] Kyoto Univ, Grad Sch Energy Sci, Sakyo Ku, Yoshidahonmachi, Kyoto 6068501, Japan
关键词
Air pollution; Machine learning; Distance decay effect; Prenatal exposure; Land use regression; AMBIENT AIR-POLLUTION; USE REGRESSION-MODELS; LOW-BIRTH-WEIGHT; SATELLITE; VARIABILITY; PREGNANCY; PM2.5; RISK; ASSOCIATION; POLLUTANTS;
D O I
10.1016/j.scitotenv.2018.03.324
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Adequate spatial and temporal estimates of NO2 concentrations are essential for proper prenatal exposure assessment. Here, we develop a spatiotemporal land use random forest (LURF) model of the monthly mean NO2 over four years in a metropolitan area of Japan. The overall objective is to obtain accurate NO2 estimates for use in prenatal exposure assessments. We use random forests to convey the non-linear relationship between NO2 concentrations and predictor variables, and compare the prediction accuracy with that of a linear regression. In addition, we include the distance decay effect of emission sources on NO2 concentrations for more efficient model construction. The prediction accuracy of the LURF model is evaluated through a leave-one-monitor-out cross validation. We obtain a high R-2 value of 0.79, which is better than that of the conventional land use regression model using linear regression (R-2 of 0.73). We also evaluate the LURF model via a temporal and overall cross validation and obtain R-2 values of 0.84 and 0.92, respectively. We successfully integrate temporal and spatial components into our model, which exhibits higher accuracy than spatial models constructed individually for each month. Our findings illustrate the advantage of using a LURF to model the spatiotemporal variability of NO2 concentrations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1269 / 1277
页数:9
相关论文
共 40 条
[1]   Exploring the modeling of spatiotemporal variations in ambient air pollution within the land use regression framework: Estimation of PM10 concentrations on a daily basis [J].
Alam, Md Saniul ;
McNabola, Aonghus .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2015, 65 (05) :628-640
[2]   National Spatiotemporal Exposure Surface for NO2: Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000-2010 [J].
Bechle, Matthew J. ;
Millet, Dylan B. ;
Marshall, Julian D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (20) :12297-12305
[3]   A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States [J].
Beckerman, Bernardo S. ;
Jerrett, Michael ;
Serre, Marc ;
Martin, Randall V. ;
Lee, Seung-Jae ;
van Donkelaar, Aaron ;
Ross, Zev ;
Su, Jason ;
Burnett, Richard T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (13) :7233-7241
[4]   Mapping of background air pollution at a fine spatial scale across the European Union [J].
Beelen, Rob ;
Hoek, Gerard ;
Pebesma, Edzer ;
Vienneau, Danielle ;
de Hoogh, Kees ;
Briggs, David J. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (06) :1852-1867
[5]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches [J].
Brokamp, Cole ;
Jandarov, Roman ;
Rao, M. B. ;
LeMasters, Grace ;
Ryan, Patrick .
ATMOSPHERIC ENVIRONMENT, 2017, 151 :1-11
[8]   Combining land use regression models and fixed site monitoring to reconstruct spatiotemporal variability of NO2 concentrations over a wide geographical area [J].
Cordioli, M. ;
Pironi, C. ;
De Munari, E. ;
Marmiroli, N. ;
Lauriola, P. ;
Ranzi, A. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 574 :1075-1084
[9]   Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States [J].
Di, Qian ;
Kloog, Itai ;
Koutrakis, Petros ;
Lyapustin, Alexei ;
Wang, Yujie ;
Schwartz, Joel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (09) :4712-4721
[10]   A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression [J].
Di, Qian ;
Koutrakis, Petros ;
Schwartz, Joel .
ATMOSPHERIC ENVIRONMENT, 2016, 131 :390-399