Unitary Transformation of the Electronic Hamiltonian with an Exact Quadratic Truncation of the Baker-Campbell-Hausdorff Expansion

被引:42
作者
Lang, Robert A. [1 ,2 ]
Ryabinkin, Ilya G. [3 ]
Izmaylov, Artur F. [1 ,2 ]
机构
[1] Univ Toronto Scarborough, Dept Phys & Environm Sci, Toronto, ON M1C 1A4, Canada
[2] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
[3] OTI Lumion Inc, Toronto, ON M5G 1L5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
VARIATIONAL QUANTUM EIGENSOLVER;
D O I
10.1021/acs.jctc.0c00170
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of current and near-term quantum hardware to the electronic structure problem is highly limited by qubit counts, coherence times, and gate fidelities. To address these restrictions within the variational quantum eigensolver (VQE) framework, many recent contributions have suggested dressing the electronic Hamiltonian to include a part of electron con-elation, leaving the rest to VQE state preparation. We present a new dressing scheme that combines the preservation of the Hamiltonian hermiticity and an exact quadratic truncation of the Baker-Campbell-Hausdorff expansion. The new transformation is constructed as the exponent of an involutory linear combination (ILC) of anti-commuting Pauli products. It incorporates important strong correlation effects in the dressed Hamiltonian and can be viewed as a classical preprocessing step to alleviate the resource requirements of the subsequent VQE application. The assessment of the new computational scheme for the electronic structure of the LiH, H2O, and N-2 molecules shows a significant increase in efficiency compared to the conventional qubit coupled cluster dressings.
引用
收藏
页码:66 / 78
页数:13
相关论文
共 49 条
[11]   An adaptive variational algorithm for exact molecular simulations on a quantum computer [J].
Grimsley, Harper R. ;
Economou, Sophia E. ;
Barnes, Edwin ;
Mayhall, Nicholas J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[12]  
Helgaker T., 2013, Molecular Electronic-Structure Theory
[13]   Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator [J].
Hempel, Cornelius ;
Maier, Christine ;
Romero, Jonathan ;
McClean, Jarrod ;
Monz, Thomas ;
Shen, Heng ;
Jurcevic, Petar ;
Lanyon, Ben P. ;
Love, Peter ;
Babbush, Ryan ;
Aspuru-Guzik, Alan ;
Blatt, Rainer ;
Roos, Christian F. .
PHYSICAL REVIEW X, 2018, 8 (03)
[14]  
Huggins William J., 2019, ARXIV E PRINTS
[15]   On the order problem in construction of unitary operators for the variational quantum eigensolver [J].
Izmaylov, Artur F. ;
Diaz-Tinoco, Manuel ;
Lang, Robert A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (23) :12980-12986
[16]   Unitary Partitioning Approach to the Measurement Problem in the Variational Quantum Eigensolver Method [J].
Izmaylov, Artur F. ;
Yen, Tzu-Ching ;
Lang, Robert A. ;
Verteletskyi, Vladyslav .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (01) :190-195
[17]   Revising the measurement process in the variational quantum eigensolver: is it possible to reduce the number of separately measured operators? [J].
Izmaylov, Artur F. ;
Yen, Tzu-Ching ;
Ryabinkin, Ilya G. .
CHEMICAL SCIENCE, 2019, 10 (13) :3746-3755
[18]   Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets [J].
Kandala, Abhinav ;
Mezzacapo, Antonio ;
Temme, Kristan ;
Takita, Maika ;
Brink, Markus ;
Chow, Jerry M. ;
Gambetta, Jay M. .
NATURE, 2017, 549 (7671) :242-246
[19]   Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model [J].
Krylov, AI ;
Sherrill, CD ;
Byrd, EFC ;
Head-Gordon, M .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (24) :10669-10678
[20]   ERROR ANALYSIS AND IMPROVEMENTS OF COUPLED-CLUSTER THEORY [J].
KUTZELNIGG, W .
THEORETICA CHIMICA ACTA, 1991, 80 (4-5) :349-386