Ground state solution and multiple solutions to asymptotically linear Schrodinger equations

被引:4
|
作者
Fang, Xiang-Dong [1 ,2 ]
Han, Zhi-Qing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2014年
关键词
Schrodinger equation; ground state solution; multiplicity of solutions; asymptotically linear; SEMILINEAR ELLIPTIC EQUATION; R-N; POSITIVE SOLUTION; EXISTENCE; INFINITY;
D O I
10.1186/s13661-014-0216-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Schrodinger equation , , where V and f are periodic in , asymptotically linear and satisfies a monotonicity condition. We use the generalized Nehari manifold methods to obtain a ground state solution and infinitely many geometrically distinct solutions when f is odd in u.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Ground state solution and multiple solutions to asymptotically linear Schrödinger equations
    Xiang-Dong Fang
    Zhi-Qing Han
    Boundary Value Problems, 2014
  • [2] Ground state solutions for asymptotically periodic Schrodinger equations with indefinite linear part
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (01) : 113 - 122
  • [3] A positive ground state solution for a class of asymptotically periodic Schrodinger equations
    Liu, Jiu
    Liao, Jia-Feng
    Tang, Chun-Lei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (04) : 965 - 976
  • [4] Existence of ground state solutions for asymptotically linear Schrodinger-Poisson systems
    Du, Miao
    Zhang, Fubao
    Tian, Lixin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) : 3535 - 3548
  • [5] POSITIVE GROUND STATE SOLUTIONS OF ASYMPTOTICALLY LINEAR SCHRODINGER-POISSON SYSTEMS
    Ma, Chao
    Tang, Chun-Lei
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (04) : 731 - 744
  • [6] GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC SCHRODINGER EQUATIONS WITH CRITICAL GROWTH
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [7] GROUND STATE SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS WITH ASYMPTOTICALLY PERIODIC POTENTIALS
    Guo, Jianmin
    Kang, Shugui
    Ma, Shiwang
    Zhang, Guang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 1663 - 1677
  • [8] Ground-State Solutions for Asymptotically Cubic Schrodinger-Maxwell Equations
    Huang, Wen-nian
    Tang, X. H.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3469 - 3481
  • [9] Multiple solutions of Schrodinger equations with indefinite linear part and super or asymptotically linear terms
    Ding, YH
    Lee, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) : 137 - 163
  • [10] GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL GROWTH
    Xue, Yanfang
    Tang, Chunlei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (03) : 1121 - 1145