Semi-implicit Euler scheme for generalized Newtonian fluids

被引:27
作者
Diening, Lars
Prohl, Andreas
Ruzicka, Michael
机构
[1] Univ Freiburg, Math Inst, Abt Angew Math, D-79104 Freiburg, Germany
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
non-Newtonian fluid flow; degenerate parabolic system; time discretization; weak and strong solution; shear-dependent viscosity; error analysis;
D O I
10.1137/050634335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rheological behavior of certain non-Newtonian fluids in engineering sciences is often modeled by power law ansatzes with p <= 2. So far, existing numerical analysis for local strong solutions studies a fully implicit time discretization and find only restricted ranges of admissible p's for corresponding error estimates [ A. Prohl and M. Ruzicka, SIAM J. Numer. Anal., 39 ( 2001), pp. 214 - 249]; different nonlinear stabilization strategies which allow a corresponding error analysis for smaller p's are examined in [ L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, Ph. D. thesis, University of Freiburg, Freiburg, Germany, 2002] and [ L. Diening, A. Prohl, and M. Ruzicka, in Nonlinear Problems in Mathematical Physics and Related Topics, II, Kluwer/Plenum, New York, 2002, pp. 89 - 118]. In the present paper, a semi-implicit time discretization scheme is proposed, and error estimates apply to the extended range p is an element of ( 3/2, 2]. The key analytical tool is a new Gronwall-type inequality.
引用
收藏
页码:1172 / 1190
页数:19
相关论文
共 18 条
[1]  
Bird R. B., 1987, DYNAMICS POLYM LIQUI, V1
[2]  
DAVEIGA HB, 2004, REGULARITY FLOWS L 2
[3]   Strong solutions for generalized Newtonian fluids [J].
Diening, L ;
Ruzicka, M .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (03) :413-450
[4]  
DIENING L, 2002, THESIS U FREIBURG FR
[5]  
DIENING L, 2002, NONLINEAR PROBLEMS M, V2, P89
[6]   An existence result for fluids with shear dependent viscosity - Steady flows [J].
Frehse, J ;
Malek, J ;
Steinhauer, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) :3041-3049
[7]  
Kufner A., 1977, FUNCTION SPACES
[8]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS
[9]  
Lions Jacques-Louis, 1969, QUELQUES METHODES RE
[10]   EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY [J].
MALEK, J ;
RAJAGOPAL, KR ;
RUZICKA, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (06) :789-812