Direct Anisotropic Growth of CdS Nanocrystals in Thermotropic Liquid Crystal Templates for Heterojunction Optoelectronics

被引:10
作者
Yuan, Kai [1 ]
Chen, Lie [1 ]
Chen, Yiwang [1 ,2 ]
机构
[1] Nanchang Univ, Dept Chem, Inst Polymers, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Jiangxi Prov Key Lab New Energy Chem, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
crystal growth; liquid crystals; nanostructures; semiconductors; thin films; ORGANIC-INORGANIC NANOCOMPOSITES; HYBRID SOLAR-CELLS; IN-SITU; CONJUGATED POLYMERS; QUANTUM DOTS; PHOTOVOLTAIC PERFORMANCE; GOLD NANOPARTICLES; ZNO NANOPARTICLES; NANOSTRUCTURES; COPOLYMER;
D O I
10.1002/chem.201403331
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The direct growth of CdS nanocrystals in functional solid-state thermotropic liquid crystal (LC) small molecules and a conjugated LC polymer by in situ thermal decomposition of a single-source cadmium xanthate precursor to fabricate LC/CdS hybrid nanocomposites is described. The influence of thermal annealing temperature of the LC/CdS precursors upon the nanomorphology, photophysics, and optoelectronic properties of the LC/CdS nanocomposites is systematically studied. Steady-state PL and ultrafast emission dynamics studies show that the charge-transfer rates are strongly dependent on the thermal annealing temperature. Notably, annealing at liquid-crystal state temperature promotes a more organized nanomorphology of the LC/CdS nanocomposites with improved photophysics and optoelectronic properties. The results confirm that thermotropic LCs can be ideal candidates as organization templates for the control of organic/inorganic hybrid nanocomposites at the nanoscale level. The results also demonstrate that in situ growth of semiconducting nanocrystals in thermotropic LCs is a versatile route to hybrid organic/inorganic nanocomposites and optoelectronic devices.
引用
收藏
页码:11488 / 11495
页数:8
相关论文
共 53 条
[1]   Hybrid Resonant Organic Inorganic Nanostructures for Optoelectronic Applications [J].
Agranovich, V. M. ;
Gartstein, Yu. N. ;
Litinskaya, M. .
CHEMICAL REVIEWS, 2011, 111 (09) :5179-5214
[2]  
[Anonymous], ANGEW CHEM INT ED
[3]   Nematic to smectic texture transformation in MBBA by in situ synthesis of silver nanoparticles [J].
Antharjanam, P. K. Sudhadevi ;
Prasad, Edamana .
NEW JOURNAL OF CHEMISTRY, 2010, 34 (03) :420-425
[4]   Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications [J].
Chaudhuri, Rajib Ghosh ;
Paria, Santanu .
CHEMICAL REVIEWS, 2012, 112 (04) :2373-2433
[5]   Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells [J].
Chen, Xun ;
Chen, Lie ;
Chen, Yiwang .
RSC ADVANCES, 2014, 4 (07) :3627-3632
[6]   Patterned Silver Nanoparticles embedded in a Nanoporous Smectic Liquid Crystalline Polymer Network [J].
Dasgupta, Debarshi ;
Shishmanova, Ivelina K. ;
Ruiz-Carretero, Amparo ;
Lu, Kangbo ;
Verhoeven, Martinus ;
van Kuringen, Huub P. C. ;
Portale, Giuseppe ;
Leclere, Philippe ;
Bastiaansen, Cees W. M. ;
Broer, Dirk J. ;
Schenning, Albertus P. H. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (30) :10922-10925
[7]  
Dobbs W., 2006, Angewandte Chemie, V118, P4285, DOI DOI 10.1002/ANGE.200600929
[8]   Electrodeposition of silver particles and gold nanoparticles from ionic liquid-crystal precursors [J].
Dobbs, William ;
Suisse, Jean-Moise ;
Douce, Laurent ;
Welter, Richard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (25) :4179-4182
[9]   Direct Growth of Metal Sulfide Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic-Organic Solar Cells [J].
Dowland, Simon ;
Lutz, Thierry ;
Ward, Alexander ;
King, Simon P. ;
Sudlow, Anna ;
Hill, Michael S. ;
Molloy, Kieran C. ;
Haque, Saif A. .
ADVANCED MATERIALS, 2011, 23 (24) :2739-2744
[10]   Nongeminate Recombination in Planar and Bulk Heterojunction Organic Solar Cells [J].
Foertig, Alexander ;
Wagenpfahl, Alexander ;
Gerbich, Thiemo ;
Cheyns, David ;
Dyakonov, Vladimir ;
Deibel, Carsten .
ADVANCED ENERGY MATERIALS, 2012, 2 (12) :1483-1489