Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31

被引:120
作者
Li, W. Y. [1 ]
Fu, T. [1 ]
Huetsch, L. [2 ]
Hilgert, J. [2 ]
Wang, F. F. [1 ]
dos Santos, J. F. [2 ]
Huber, N. [3 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Shaanxi Key Lab Frict Welding Technol, Xian 710072, Shaanxi, Peoples R China
[2] Helmholtz Zentrum Geesthacht, Inst Mat Res, Solid State Joining Proc WMP, D-21502 Geesthacht, Germany
[3] Helmholtz Zentrum Geesthacht, Inst Mat Res, D-21502 Geesthacht, Germany
关键词
Bobbin-tool friction stir welding; Magnesium alloy; Microstructure; Mechanical property; MAGNESIUM ALLOY; TENSILE PROPERTIES; JOINTS; BEHAVIOR; QUALITY;
D O I
10.1016/j.matdes.2014.07.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of rotational and welding speeds on the microstructure and mechanical properties of bobbin-tool friction stir welded (BT-FSW) Mg AZ31 were investigated. The results indicated that the thermomechanically affected zone (TMAZ) consisted of equiaxed grains, which were inconsistent with the deformed, rotated and elongated grains found in the TMAZs of bobbin-tool friction stir welded Al alloys and friction stir welded Al and Mg alloys. The average grain size increased as the ratio of the rotational speed to welding speed increased. Excellent welds with no degradation in hardness were produced using a low heat input. Mechanical tests revealed that the ultimate tensile strengths gradually increased with increasing welding speed while keeping the rotational speed constant. The rotational and welding speeds had only slight influences on the yield stress and fracture elongation. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:714 / 720
页数:7
相关论文
共 36 条
[1]   Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy [J].
Afrin, N. ;
Chen, D. L. ;
Cao, X. ;
Jahazi, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 472 (1-2) :179-186
[2]   Strain hardening behavior of a friction stir welded magnesium alloy [J].
Afrin, N. ;
Chen, D. L. ;
Cao, X. ;
Jahazi, M. .
SCRIPTA MATERIALIA, 2007, 57 (11) :1004-1007
[3]  
[Anonymous], 1992, 10002 DIN EN
[4]  
Arbegast WJ, 2002, 5 INT C TRENDS WELD
[5]   Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy [J].
Cao, X. ;
Jahazi, M. .
MATERIALS & DESIGN, 2011, 32 (01) :1-11
[6]   Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy [J].
Cao, X. ;
Jahazi, M. .
MATERIALS & DESIGN, 2009, 30 (06) :2033-2042
[7]   Producing nanograined microstructure in Mg-Al-Zn alloy by two-step friction stir processing [J].
Chang, C. I. ;
Du, X. H. ;
Huang, J. C. .
SCRIPTA MATERIALIA, 2008, 59 (03) :356-359
[8]   Friction Stir Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Tensile Properties [J].
Chowdhury, S. H. ;
Chen, D. L. ;
Bhole, S. D. ;
Cao, X. ;
Wanjara, P. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (01) :323-336
[9]   Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters [J].
Commin, L. ;
Dumont, M. ;
Masse, J. -E. ;
Barrallier, L. .
ACTA MATERIALIA, 2009, 57 (02) :326-334
[10]   Friction-stir welding of magnesium alloy AZ31B [J].
Esparza, JA ;
Davis, WC ;
Trillo, EA ;
Murr, LE .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2002, 21 (12) :917-920