Redox signaling in cancer biology

被引:153
作者
Gius, David
Spitz, Douglas R. [1 ]
机构
[1] Univ Iowa, Free Rad & Radiat Biol Program, Med Labs B180, Dept Radiat Oncol,Holden Comprehens Canc Ctr, Iowa City, IA 52242 USA
[2] NCI, Radiat Oncol Branch, Radiat Oncol Sci Program, Ctr Canc Res,NIH, Bethesda, MD USA
关键词
D O I
10.1089/ars.2006.8.1249
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Over the last three decades, it is has become increasing clear that intracellular signaling pathways are activated via changes in intracellular metabolic oxidation/reduction (redox) reactions involving reactive oxygen species (ROS; i.e., superoxide and hydrogen peroxide). The initial proposals hypothesized that signaling through metabolic oxidation/reduction (redox) reactions involving ROS could contribute to carcinogenesis and progression to malignancy. Strong evidence for this hypothesis was obtained from studies showing that environmental insults (i.e., ionizing radiation) as well as xenobiotics (i.e., polycyclic aromatic hydrocarbons and phorbol esters) capable of inducing steady-state increases in free radical production and ROS could act as both initiators and promoters of carcinogenesis. This Forum is directed at understanding possible redox signaling mechanisms governing cellular radiation response, tumor growth, and response to therapy, as well as the role of nitric oxide in cancer biology.
引用
收藏
页码:1249 / 1252
页数:4
相关论文
共 40 条
[1]   REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO [J].
ABATE, C ;
PATEL, L ;
RAUSCHER, FJ ;
CURRAN, T .
SCIENCE, 1990, 249 (4973) :1157-1161
[2]   DIETARY CARCINOGENS AND ANTICARCINOGENS - OXYGEN RADICALS AND DEGENERATIVE DISEASES [J].
AMES, BN .
SCIENCE, 1983, 221 (4617) :1256-1264
[3]   Inhibition of glutamate cysteine ligase activity sensitizes human breast cancer cells to the toxicity of 2-deoxy-D-glucose [J].
Andringa, KK ;
Coleman, NC ;
Aykin-Burns, N ;
Hitchler, NJ ;
Walsh, SA ;
Domann, FE ;
Spitz, DR .
CANCER RESEARCH, 2006, 66 (03) :1605-1610
[4]   Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1 [J].
Arnold, RS ;
Shi, J ;
Murad, E ;
Whalen, AM ;
Sun, CQ ;
Polavarapu, R ;
Parthasarathy, S ;
Petros, JA ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5550-5555
[5]   Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells [J].
Blackburn, RV ;
Spitz, DR ;
Liu, X ;
Galoforo, SS ;
Sim, JE ;
Ridnour, LA ;
Chen, JC ;
Davis, BH ;
Corry, PM ;
Lee, YJ .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 26 (3-4) :419-430
[6]   PROOXIDANT STATES AND TUMOR PROMOTION [J].
CERUTTI, PA .
SCIENCE, 1985, 227 (4685) :375-381
[7]   Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation [J].
Claiborne, A ;
Yeh, JI ;
Mallett, TC ;
Luba, J ;
Crane, EJ ;
Charrier, V ;
Parsonage, D .
BIOCHEMISTRY, 1999, 38 (47) :15407-15416
[8]  
COOK JA, ANTIOXID REDOX SIGNA
[9]  
DASGUPTA J, ANTIOXID REDOX SIGNA
[10]   Mitochondrial signals to nucleus regulate estrogen-induced cell growth [J].
Felty, Q ;
Roy, D .
MEDICAL HYPOTHESES, 2005, 64 (01) :133-141