MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS

被引:159
作者
Brezzi, Franco [1 ]
Buffa, Annalisa
Lipnikov, Konstantin [2 ]
机构
[1] Ist Univ Studi Super, Pavia, Italy
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2009年 / 43卷 / 02期
关键词
Finite differences; polyhedral meshes; diffusion equation; error estimates; POLYHEDRAL MESHES; DIFFUSION-PROBLEMS; CONVERGENCE; FAMILY;
D O I
10.1051/m2an:2008046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent II(1) norm are derived.
引用
收藏
页码:277 / 295
页数:19
相关论文
共 14 条
[1]  
[Anonymous], 1988, ELLIPTIC BOUNDARY VA
[2]  
BOCHEV PB, 2006, IMA HOT TOPICS WORKS, V142
[3]  
Brenner S. C., 2007, MATH THEORY FINITE E
[4]   Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) :275-297
[5]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[6]   A family of mimetic finite difference methods on polygonal and polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Simoncini, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) :1533-1551
[7]  
BREZZI F, GEN FRAMEWORK UNPUB
[8]  
Brezzi F., 2007, Comput. Method Appl. Mech. Engrg, V196, P36823692
[9]   A tensor artificial viscosity using a mimetic finite difference algorithm [J].
Campbell, JC ;
Shashkov, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (02) :739-765
[10]  
Ciarlet Philippe G., 2002, Finite Element Method for Elliptic Problems