MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS

被引:159
|
作者
Brezzi, Franco [1 ]
Buffa, Annalisa
Lipnikov, Konstantin [2 ]
机构
[1] Ist Univ Studi Super, Pavia, Italy
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2009年 / 43卷 / 02期
关键词
Finite differences; polyhedral meshes; diffusion equation; error estimates; POLYHEDRAL MESHES; DIFFUSION-PROBLEMS; CONVERGENCE; FAMILY;
D O I
10.1051/m2an:2008046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent II(1) norm are derived.
引用
收藏
页码:277 / 295
页数:19
相关论文
共 50 条
  • [1] TENSOR FORMULATION OF 3-D MIMETIC FINITE DIFFERENCES AND APPLICATIONS TO ELLIPTIC PROBLEMS
    Blanco, J.
    Rojas, O.
    Chacon, C.
    Guevara-Jordan, J. M.
    Castillo, J.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2016, 45 : 457 - 475
  • [2] Mimetic finite difference approximation of quasilinear elliptic problems
    Antonietti, Paola F.
    Bigoni, Nadia
    Verani, Marco
    CALCOLO, 2015, 52 (01) : 45 - 67
  • [3] Mimetic finite difference approximation of quasilinear elliptic problems
    Paola F. Antonietti
    Nadia Bigoni
    Marco Verani
    Calcolo, 2015, 52 : 45 - 67
  • [4] Mimetic finite differences for nonlinear and control problems
    Antonietti, P. F.
    da Veiga, L. Beirao
    Bigoni, N.
    Verani, M.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08): : 1457 - 1493
  • [5] CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS
    Cangiani, Andrea
    Manzini, Gianmarco
    Russo, Alessandro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2612 - 2637
  • [6] High-order mimetic finite differences for anisotropic elliptic equations
    Boada, Angel
    Paolini, Christopher
    Castillo, Jose E.
    COMPUTERS & FLUIDS, 2020, 213
  • [7] An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems
    da Veiga, Lourenco Beirao
    Manzini, Gianmarco
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (11) : 1696 - 1723
  • [8] Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems
    Lipnikov, K.
    Manzini, G.
    Svyatskiy, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (07) : 2620 - 2642
  • [9] A two-level method for mimetic finite difference discretizations of elliptic problems
    Antonietti, Paola F.
    Verani, Marco
    Zikatanov, Ludmil
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (11) : 2674 - 2687
  • [10] Mimetic Discretizations of Elliptic Control Problems
    Antonietti, Paola F.
    Bigoni, Nadia
    Verani, Marco
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (01) : 14 - 27