Ionospheric plasma acceleration at Mars:: ASPERA-3 results

被引:51
作者
Lundin, R.
Winningham, D.
Barabash, S.
Frahm, R. A.
Andersson, H.
Holmstrom, M.
Grigoriev, A.
Yamauchi, M.
Borg, H.
Sharber, J. R.
Sauvaud, J. -A.
Fedorov, A.
Budnik, E.
Thocaven, J. -J.
Asamura, K.
Hayakawa, H.
Coates, A. J.
Linder, D. R.
Kataria, D. O.
Curtis, C.
Hsieh, K. C.
Sandel, B. R.
Grande, M.
Carter, M.
Reading, D. H.
Koskinen, H.
Kallio, E.
Riihela, P.
Schmidt, W.
Sales, T.
Kozyra, J.
Krupp, N.
Woch, J.
Fraenz, M.
Luhmann, J.
McKenna-Lawler, S.
Cerulli-Irelli, R.
Orsini, S.
Maggi, M.
Roelof, E.
Williams, D.
Livi, S.
C son Brandt, P.
Wurz, P.
Bochsler, P.
机构
[1] Swedish Inst Space Phys, S-98128 Kiruna, Sweden
[2] SW Res Inst, San Antonio, TX 78220 USA
[3] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France
[4] Inst Space & Astronaut Sci, Sagamihara, Japan
[5] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[6] Univ Arizona, Tucson, AZ 85721 USA
[7] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[8] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[9] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA
[10] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Duhm, Germany
[11] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[12] Natl Univ Ireland, Space Technol Ltd, Maynooth, Kildare, Ireland
[13] Ist Fis Spazio Interplanetario, I-00133 Rome, Italy
[14] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[15] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland
关键词
Mars; atmosphere; ionospheres; magnetospheres;
D O I
10.1016/j.icarus.2005.10.035
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on-board the Mars Express spacecraft (MEX) measured penetrating solar wind plasma and escaping/accelerated ionospheric plasma at very low altitudes (250 km) in the dayside subsolar region. This implies a direct exposure of the martian topside atmosphere to solar wind plasma forcing leading to energization of ionospheric plasma. The ion and electron energization and the ion outflow from Mars is surprisingly similar to that over the magnetized Earth. Narrow "monoenergetic" cold ion beams, ion beams with broad energy distributions, sharply peaked electron energy spectra, and bidirectional streaming electrons are particle features also observed near Mars. Energized martian ionospheric ions (O+, O-2(+), CO2+, etc.) flow in essentially the same direction as the external sheath flow. This suggests 2 2 that the planetary ion energization couples directly to processes in the magnetosheath/solar wind. On the other hand, the beam-like distribution of the energized plasma implies more indirect energization processes like those near the Earth, i.e., energization in a magnetized environment by waves and/or parallel (to B) electric fields. The general conditions for martian plasma energization are, however, different from those in the Earth's magnetosphere. Mars has a weak intrinsic magnetic field and solar wind plasma may therefore penetrate deep into the dense ionospheric plasma. Local crustal magnetization, discovered by Acuna et al. [Acuna, M.J., Connerey, J., Ness, N., Lin, R., Mitchell, D., Carlsson, C., McFadden, J., Anderson, K., Reme, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P., 1999. Science 284, 790-793], provide some dayside shielding against the solar wind. On the other hand, multiple magnetic anomalies may also lead to "hot spots" facilitating ionospheric plasma energization. We discuss the ASPERA-3 findings of martian ionospheric ion energization and present evidences for two types of plasma energization processes responsible for the low- and mid-altitude plasma energization near Mars: magnetic field-aligned acceleration by parallel electric fields and plasma energization by low frequency waves. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:308 / 319
页数:12
相关论文
共 41 条
[1]   Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment [J].
Acuña, MH ;
Connerney, JEP ;
Ness, NF ;
Lin, RP ;
Mitchell, D ;
Carlson, CW ;
McFadden, J ;
Anderson, KA ;
Rème, H ;
Mazelle, C ;
Vignes, D ;
Wasilewski, P ;
Cloutier, P .
SCIENCE, 1999, 284 (5415) :790-793
[2]  
BARABASH S, 2004, ESA
[3]   Discovery of an aurora on Mars [J].
Bertaux, JL ;
Leblanc, F ;
Witasse, O ;
Quemerais, E ;
Lilensten, J ;
Stern, SA ;
Sandel, B ;
Korablev, O .
NATURE, 2005, 435 (7043) :790-794
[4]  
BRAIN D, 2005, 1 MARS EXPR SCI C 21
[5]   Hydrodynamic escape of oxygen from primitive atmospheres: Applications to the cases of Venus and Mars [J].
Chassefiere, E .
ICARUS, 1996, 124 (02) :537-552
[6]   SOME GENERAL-CHARACTERISTICS OF UPFLOWING ION-BEAMS OVER THE AURORAL-ZONE AND THEIR RELATIONSHIP TO AURORAL ELECTRONS [J].
COLLIN, HL ;
SHARP, RD ;
SHELLEY, EG ;
JOHNSON, RG .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA8) :6820-6826
[7]   Low-frequency plasma oscillations at Mars during the October 2003 solar storm -: art. no. A09S33 [J].
Espley, JR ;
Cloutier, PA ;
Crider, DH ;
Brain, DA ;
Acuña, MH .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A9)
[8]   1ST MEASUREMENTS OF PLASMA-WAVES NEAR MARS [J].
GRARD, R ;
PEDERSEN, A ;
KLIMOV, S ;
SAVIN, S ;
SKALSKY, A ;
TROTIGNON, JG ;
KENNEL, C .
NATURE, 1989, 341 (6243) :607-609
[9]   Ponderomotive upward acceleration of ions by ion cyclotron and Alfven waves over the polar regions [J].
Guglielmi, A ;
Lundin, R .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A7) :13219-13236
[10]  
Hanson W. B., 1977, Journal of Geophysical Research, V82, P4351, DOI 10.1029/JS082i028p04351