An approach to generate deterministic Brownian motion

被引:35
作者
Huerta-Cuellar, G. [1 ,2 ]
Jimenez-Lopez, E. [2 ]
Campos-Canton, E. [2 ]
Pisarchik, A. N. [3 ,4 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Lagos De Moreno 47460, Jalisco, Mexico
[2] Inst Potosino Invest Cient & Tecnol, Div Matemat Aplicadas, San Luis Potosi 78216, Mexico
[3] Ctr Invest Opt, Guanajuato 37150, Mexico
[4] Tech Univ Madrid, Ctr Biomed Technol, Madrid 28223, Spain
关键词
Brownian motion; Deterministic Brownian motion; Unstable dissipative systems; DFA analysis;
D O I
10.1016/j.cnsns.2014.01.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an approach for generation of deterministic Brownian motion. By adding an additional degree of freedom to the Langevin equation and transforming it into a system of three linear differential equations, we determine the position of switching surfaces, which act as a multi-well potential with a short fluctuation escape time. Although the model is based on the Langevin equation, the final system does not contain a stochastic term, and therefore the obtained motion is deterministic. Nevertheless, the system behavior exhibits important characteristic properties of Brownian motion, namely, a linear growth in time of the mean square displacement, a Gaussian distribution, and a -2 power law of the frequency spectrum. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:2740 / 2746
页数:7
相关论文
共 40 条
[1]  
Beck C., 1990, PHYSICA A, V296, P42
[2]   FROM DYNAMICS TO THERMODYNAMICS - LINEAR-RESPONSE AND STATISTICAL-MECHANICS [J].
BIANUCCI, M ;
MANNELLA, R ;
WEST, BJ ;
GRIGOLINI, P .
PHYSICAL REVIEW E, 1995, 51 (04) :3002-3022
[3]  
Burger H., 1917, VERSL KON AK, V25, P1482
[4]   Multiscroll attractors by switching systems [J].
Campos-Canton, E. ;
Barajas-Ramirez, J. G. ;
Solis-Perales, G. ;
Femat, R. .
CHAOS, 2010, 20 (01)
[5]   Attractors generated from switching unstable dissipative systems [J].
Campos-Canton, Eric ;
Femat, Ricardo ;
Chen, Guanrong .
CHAOS, 2012, 22 (03)
[6]  
Devaney R. L., 1992, 1 COURSE CHAOTIC DYN
[7]   LIAPUNOV EXPONENTS FROM TIME-SERIES [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D ;
CILIBERTO, S .
PHYSICAL REVIEW A, 1986, 34 (06) :4971-4979
[8]  
Einstein A, 1906, ANN PHYS-BERLIN, V19, P371
[10]  
Fokker A, 1913, THESIS