Consider the following forest-fire model where the possible locations of trees are the sites of a cubic lattice. Each site has two possible states: 'vacant' or 'occupied'. Vacant sites become occupied according to independent rate 1 Poisson processes. Independently, at each site ignition (by lightning) occurs according to independent rate lambda Poisson processes. When a site is ignited, its occupied cluster becomes vacant instantaneously. If the lattice is one-dimensional or finite, then with probability one, at each time the state of a given site only depends on finitely many Poisson events; a process with the above description can be constructed in a standard way. If the lattice is infinite and multi-dimensional, in principle, the state of a given site can be influenced by infinitely many Poisson events in finite time. For all positive lambda, the existence of a multi-dimensional infinite volume forest-fire process with parameter lambda is proven.