Paley Effect for Entire Dirichlet Series

被引:0
作者
Hlova, T. Ya. [1 ]
Filevych, P. V. [2 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Appl Problems Mech & Math, Lvov, Ukraine
[2] Stefanyk Precarpathian Natl Univ, Ivano Frankivsk, Ukraine
关键词
Entire Function; Nonnegative Integer; Positive Function; Dirichlet Series; Maximum Modulus;
D O I
10.1007/s11253-015-1117-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the entire Dirichlet series f(z) = a (n = 0) (a) a (n) e (z lambda n) , we establish necessary and sufficient conditions on the coefficients a (n) and exponents lambda(n) under which the function f has the Paley effect, i.e., the condition lim sup (r ->+infinity) ln M-f(r)/T-f(r) =+infinity is satisfied, where M (f) (r) and T (f) (r) are the maximum modulus and the Nevanlinna characteristic of the function f, respectively.
引用
收藏
页码:838 / 852
页数:15
相关论文
共 13 条
  • [1] ON INTEGRAL FUNCTIONS HAVING PRESCRIBED ASYMPTOTIC GROWTH
    CLUNIE, J
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03): : 396 - &
  • [2] Filevych P.V., 2003, Mat. Stud., V20, P33
  • [3] Filevych P. V., 2003, MAT STUD, V19, P37
  • [4] Filevych P. V., 2003, MAT ZAMETKI, V74, P118
  • [5] Filevych P. V., 2004, IZV VYSSH UCHEBN Z M, V4, P66
  • [6] Gol'dberg A. A., 1970, DISTRIBUTION VALUES
  • [7] Gol'dberg A. A., 1985, TEOR FUNKTS FUNKTS A, P18
  • [8] Leont'ev A. F., 1976, SERIES OF EXPONENTS
  • [9] Prytula Ya. Ya., 1995, VISN LVIV U MM, V43, P25
  • [10] Sheremeta M.M., 1999, UKR MATH J, V51, p[1149, 1296]