Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation

被引:39
作者
Hayashi, M [1 ]
机构
[1] RIKEN, Brain Sci Inst, Lab Math Neurosci, Wako, Saitama 3510198, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 36期
关键词
D O I
10.1088/0305-4470/35/36/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss two quantum analogues of the Fisher information, the symmetric logarithmic derivative Fisher information and Kubo-Mori-Bogoljubov Fisher information from a large deviation viewpoint of quantum estimation and prove that the former gives the true bound and the latter gives the bound of consistent superefficient estimators. As another comparison, it is shown that the difference between them is characterized by the change of the order of limits.
引用
收藏
页码:7689 / 7727
页数:39
相关论文
共 42 条
[1]  
AMARI SI, 2000, METHODS INFORMATION
[2]  
[Anonymous], 1996, Matrix Analysis
[3]  
[Anonymous], 1990, Large Deviation Techniques in Decision, Simulation and Estimation
[4]  
Bahadur R. R., 1960, Sankhya: The Indian Journal of Statistics (1933-1960), V22, P229
[5]   RATES OF CONVERGENCE OF ESTIMATES AND TEST STATISTICS [J].
BAHADUR, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :303-&
[6]  
BAHADUR RR, 1971, REGIONAL C SERIES AP, V4
[7]  
BARNDORFFNIELSE.OE, 1978, INFORMATION EXPONENT
[8]  
Cencov NN., 2000, Statistical decision rules and optimal inference, DOI [10.1090/mmono/053, DOI 10.1090/MMONO/053]
[9]   THEOREM OF BAHADUR ON RATE OF CONVERGENCE OF POINT ESTIMATORS [J].
FU, JC .
ANNALS OF STATISTICS, 1973, 1 (04) :745-749
[10]  
FUCHS CA, 1995, QUANTPH9601020, P30401