High fusion performance in Super H-mode experiments on Alcator C-Mod and DIII-D

被引:52
作者
Snyder, P. B. [1 ]
Hughes, J. W. [2 ]
Osborne, T. H. [1 ]
Paz-Soldan, C. [1 ]
Solomon, W. M. [1 ]
Knolker, M. [3 ]
Eldon, D. [1 ]
Evans, T. [1 ]
Golfinopoulos, T. [2 ]
Grierson, B. A. [3 ]
Groebner, J. [1 ]
Hubbard, A. E. [2 ]
Kolemen, E. [3 ]
LaBombard, B. [2 ]
Laggner, F. M. [3 ]
Meneghini, O. [1 ]
Mordijck, S. [4 ]
Petrie, T. [1 ]
Scott, S. [3 ]
Wang, H. Q. [1 ]
Wilson, H. R. [5 ,6 ]
Zhu, Y. B. [7 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[4] Coll William & Mary, Williamsburg, VA USA
[5] Univ York, York Plasma Inst, York, N Yorkshire, England
[6] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon, Oxon, England
[7] Univ Calif Irvine, Irvine, CA USA
基金
英国工程与自然科学研究理事会;
关键词
pedestal; tokamak; fusion gain; Super H Mode; EPED; DIII-D; Alcator C-Mod;
D O I
10.1088/1741-4326/ab235b
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The 'Super H-Mode' regime is predicted to enable pedestal height and fusion performance substantially higher than standard H-Mode operation. This regime exists due to a bifurcation of the pedestal pressure, as a function of density, that is predicted by the EPED model to occur in strongly shaped plasmas above a critical pedestal density. Experiments on Alcator C-Mod and DIII-D have achieved access to the Super H-Mode (and Near Super H) regime, and obtained very high pedestal pressure, including the highest achieved on a tokamak (P-ped similar to 80 kPa) in C-Mod experiments operating near the ITER magnetic field. DIII-D Super H experiments have demonstrated strong performance, including the highest stored energy in the present configuration of DIII-D (W similar to 2.2-3.2 MJ), while utilizing only about half of the available heating power (P-heat similar to 7-12 MW). These DIII-D experiments have obtained the highest value of peak fusion gain, Q(DT,equiv) similar to 0.5, achieved on a medium scale (R < 2 m) tokamak. Sustained high performance operation (beta(N) similar to 2.9, H-98 similar to 1.6) has been achieved utilizing n = 3 magnetic perturbations for density and impurity control. Pedestal and global confinement has been maintained in the presence of deuterium and nitrogen gas puffing, which enables a more radiative divertor condition. A pair of simple performance metrics is developed to assess and compare regimes. Super H-Mode access is predicted for ITER and expected, based on both theoretical prediction and observed normalized performance, to allow ITER to achieve its goals (Q = 10) at I-p < 15 MA, and to potentially enable more compact, cost effective pilot plant and reactor designs.
引用
收藏
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 2018, P 2018 IAEA FUS EN C
[2]   H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET [J].
Beurskens, M. N. A. ;
Osborne, T. H. ;
Schneider, P. A. ;
Wolfrum, E. ;
Frassinetti, L. ;
Groebner, R. ;
Lomas, P. ;
Nunes, I. ;
Saarelma, S. ;
Scannell, R. ;
Snyder, P. B. ;
Zarzoso, D. ;
Balboa, I. ;
Bray, B. ;
Brix, M. ;
Flanagan, J. ;
Giroud, C. ;
Giovannozzi, E. ;
Kempenaars, M. ;
Loarte, A. ;
de la Luna, E. ;
Maddison, G. ;
Maggi, C. F. ;
McDonald, D. ;
Pasqualotto, R. ;
Saibene, G. ;
Sartori, R. ;
Solano, E. ;
Walsh, M. ;
Zabeo, L. .
PHYSICS OF PLASMAS, 2011, 18 (05)
[3]   A STANDARD DT SUPERSHOT SIMULATION [J].
BUDNY, RV .
NUCLEAR FUSION, 1994, 34 (09) :1247-1262
[4]  
Buttery R. J., 2018, 2018 IAEA FUS EN C G
[5]   The role of the density profile in the ASDEX-Upgrade pedestal structure [J].
Dunne, M. G. ;
Potzel, S. ;
Reimold, F. ;
Wischmeier, M. ;
Wolfrum, E. ;
Frassinetti, L. ;
Beurskens, M. ;
Bilkova, P. ;
Cavedon, M. ;
Fischer, R. ;
Kurzan, B. ;
Laggner, F. M. ;
McDermott, R. M. ;
Tardini, G. ;
Trier, E. ;
Viezzer, E. ;
Willensdorfer, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
[6]   Advances in radiated power control at DIII-D [J].
Eldon, D. ;
Kolemen, E. ;
Humphreys, D. A. ;
Hyatt, A. W. ;
Jarvinen, A. E. ;
Leonard, A. W. ;
McLean, A. G. ;
Moser, A. L. ;
Petrie, T. W. ;
Walker, M. L. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :285-290
[7]   The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [J].
Garofalo, A. M. ;
Burrell, K. H. ;
Eldon, D. ;
Grierson, B. A. ;
Hanson, J. M. ;
Holland, C. ;
Huijsmans, G. T. A. ;
Liu, F. ;
Loarte, A. ;
Meneghini, O. ;
Osborne, T. H. ;
Paz-Soldan, C. ;
Smith, S. P. ;
Snyder, P. B. ;
Solomon, W. M. ;
Turnbull, A. D. ;
Zeng, L. .
PHYSICS OF PLASMAS, 2015, 22 (05)
[8]   Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER [J].
Groebner, R. J. ;
Chang, C. S. ;
Hughes, J. W. ;
Maingi, R. ;
Snyder, P. B. ;
Xu, X. Q. ;
Boedo, J. A. ;
Boyle, D. P. ;
Callen, J. D. ;
Canik, J. M. ;
Cziegler, I. ;
Davis, E. M. ;
Diallo, A. ;
Diamond, P. H. ;
Elder, J. D. ;
Eldon, D. P. ;
Ernst, D. R. ;
Fulton, D. P. ;
Landreman, M. ;
Leonard, A. W. ;
Lore, J. D. ;
Osborne, T. H. ;
Pankin, A. Y. ;
Parker, S. E. ;
Rhodes, T. L. ;
Smith, S. P. ;
Sontag, A. C. ;
Stacey, W. M. ;
Walk, J. ;
Wan, W. ;
Wang, E. H. -J. ;
Watkins, J. G. ;
White, A. E. ;
Whyte, D. G. ;
Yan, Z. ;
Belli, E. A. ;
Bray, B. D. ;
Candy, J. ;
Churchill, R. M. ;
Deterly, T. M. ;
Doyle, E. J. ;
Fenstermacher, M. E. ;
Ferraro, N. M. ;
Hubbard, A. E. ;
Joseph, I. ;
Kinsey, J. E. ;
LaBombard, B. ;
Lasnier, C. J. ;
Lin, Z. ;
Lipschultz, B. L. .
NUCLEAR FUSION, 2013, 53 (09)
[9]   Measurements of the neutron source strength at DIII-D [J].
Heidbrink, WW ;
Taylor, PL ;
Phillips, JA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (01) :536-539
[10]   Physics and performance of the I-mode regime over an expanded operating space on Alcator C-Mod [J].
Hubbard, A. E. ;
Baek, S. -G. ;
Brunner, D. ;
Creely, A. J. ;
Cziegler, I. ;
Edlund, E. ;
Hughes, J. W. ;
LaBombard, B. ;
Lin, Y. ;
Liu, Z. ;
Marmar, E. S. ;
Reinke, M. L. ;
Rice, J. E. ;
Sorbom, B. ;
Sung, C. ;
Terry, J. ;
Theiler, C. ;
Tolman, E. A. ;
Walk, J. R. ;
White, A. E. ;
Whyte, D. ;
Wolfe, S. M. ;
Wukitch, S. ;
Xu, X. Q. .
NUCLEAR FUSION, 2017, 57 (12)