Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress

被引:36
|
作者
Azarmi, Farhad [1 ]
Mozafari, Vahid [1 ]
Dahaji, Payman Abbaszadeh [1 ]
Hamidpour, Mohsen [1 ]
机构
[1] Vali E Asr Univ Rafsanjan, Coll Agr, Dept Soil Sci, Rafsanjan, Iran
关键词
ACC-deaminase; Chlorophyll; NaCl stress; Osmolytes; Reactive radicals; Rhizobacteria; SALT STRESS; SUPEROXIDE-DISMUTASE; BACTERIAL ENDOPHYTES; ACC DEAMINASE; ZINC; TOLERANCE; PROLINE; PEROXIDASE; RESISTANCE; CADMIUM;
D O I
10.1007/s11738-015-2032-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity and Zn deficiency are among the major limiting factors for growth and improvement of pistachio trees in central Iran. Using plant growth promoting rhizobacteria (PGPR) is new strategy to reduce the destructive effects of salinity and improvement of nutrient availability. This study investigated the individual and the interactive effects of the PGPR and Zn treatments on some physiological and biochemical parameters, antioxidant enzymes activities and alleviation of salinity stress in pistachio seedlings. The treatments include isolates of fluorescent pseudomonads as PGPR [control (non-inoculated), pf(1), pf(2) and pf(3)], Zn (0 and 5 mg kg(-1) soil) and salinity (0, 1000 and 2000 mg NaCl kg(-1) soil). The results indicated that salinity increased the proline, soluble sugars and H2O2 concentrations in the seedling leaves and roots. Inoculation with PGPR efficiently enhanced the concentrations of proline (35 and 16 %) and the soluble sugars (25 and 22 %), whereas, reduced the H2O2 levels (16 and 18 %) in the leaves and roots. Increasing the concentration of NaCl to 2000 mg kg(-1) significantly decreased the dry weight, Zn concentration, and chlorophyll and carotenoids contents. At the same salinity level, the PGPR and Zn alone increased these parameters compared to the untreated soil, but furthest by the combined PGPR and Zn treatments. Also, the combined application of PGPR and Zn significantly increased the antioxidant enzyme activities and protein concentration relative to their sole usage in the pistachio seedling leaves and roots, especially at the higher salinity levels. The isolates containing ACC-deaminase activity were more efficient to alleviate salt stress and develop seedling improvement.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] Effects of Plant Growth-Promoting Rhizobacteria on the Physioecological Characteristics and Growth of Walnut Seedlings under Drought Stress
    Liu, Fangchun
    Ma, Hailin
    Liu, Binghua
    Du, Zhenyu
    Ma, Bingyao
    Jing, Dawei
    AGRONOMY-BASEL, 2023, 13 (02):
  • [42] Combination of silicon and plant growth promoting rhizobacteria consortia promoted the growth of melon seedlings under salt stress
    Guo, Yuze
    Guo, Huiling
    Liu, Yang
    Tao, Yu
    Liang, Yungang
    Gao, Zhixiong
    Tang, Kai
    Feng, Fuying
    HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY, 2024, 65 (06) : 1069 - 1078
  • [43] The effects of plant growth promoting rhizobacteria on antioxidant activity in chickpea (Cicer arietinum L.) under salt stress
    Yilmaz, Hilal
    Kulaz, Haluk
    LEGUME RESEARCH, 2019, 42 (01) : 72 - 76
  • [44] Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria
    Di Salvo, Luciana P.
    Silva, Esdras
    Teixeira, Katia R. S.
    Esquivel Cote, Rosalba
    Alejandra Pereyra, M.
    Garcia de Salamone, Ines E.
    JOURNAL OF BASIC MICROBIOLOGY, 2014, 54 (12) : 1310 - 1321
  • [45] Role of Plant Growth-Promoting Rhizobacteria (PGPR), Biochar, and Chemical Fertilizer under Salinity Stress
    Fazal, Aliya
    Bano, Asghari
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (17) : 1985 - 1993
  • [46] Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review
    Ha-Tran, Dung Minh
    Nguyen, Trinh Thi My
    Hung, Shih-Hsun
    Huang, Eugene
    Huang, Chieh-Chen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (06) : 1 - 38
  • [47] Role of Halotolerant Plant Growth-Promoting Rhizobacteria in Mitigating Salinity Stress: Recent Advances and Possibilities
    Kumar, Vikash
    Raghuvanshi, Nikhil
    Pandey, Abhay K.
    Kumar, Abhishek
    Thoday-Kennedy, Emily
    Kant, Surya
    AGRICULTURE-BASEL, 2023, 13 (01):
  • [48] Phenotypic display of plant growth-promoting traits in individual strains and multispecies consortia of plant growth promoting rhizobacteria and rhizobia under salinity stress
    Agrawal, Mansi
    Archana, G.
    RHIZOSPHERE, 2021, 20
  • [49] ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in Pisum sativum
    Anmol Gupta
    Ambreen Bano
    Smita Rai
    Manoj Kumar
    Jasarat Ali
    Swati Sharma
    Neelam Pathak
    3 Biotech, 2021, 11
  • [50] Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants
    Tank, Neelam
    Saraf, Meenu
    JOURNAL OF PLANT INTERACTIONS, 2010, 5 (01) : 51 - 58