Modal Type Theory Based on the Intuitionistic Modal Logic IEL-

被引:2
作者
Rogozin, Daniel [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
[2] Serokell OU, Tallinn, Estonia
来源
LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2020) | 2020年 / 11972卷
基金
俄罗斯基础研究基金会;
关键词
Intuitionistic epistemic logic; Modal type theory; Functional programming; Applicative functor;
D O I
10.1007/978-3-030-36755-8_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The modal intuitionistic epistemic logic IEL- was proposed by Artemov and Protopopescu as the intuitionistic version of belief logic. We construct the modal lambda calculus which is Curry-Howard isomorphic to IEL- as the type-theoretical representation of applicative computation widely known in functional programming.
引用
收藏
页码:236 / 248
页数:13
相关论文
共 12 条
[1]   INTUITIONISTIC EPISTEMIC LOGIC [J].
Artemov, Sergei ;
Protopopescu, Tudor .
REVIEW OF SYMBOLIC LOGIC, 2016, 9 (02) :266-298
[2]  
Benton P. N., 1998, Journal of Functional Programming, V8, P177, DOI 10.1017/S0956796898002998
[3]   GROTHENDIECK TOPOLOGY AS GEOMETRIC MODALITY [J].
GOLDBLATT, RI .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1981, 27 (06) :495-529
[4]  
Kakutani Y, 2007, LECT NOTES COMPUT SC, V4807, P399
[5]  
Kavvos G.A., 2016, ABS160508106 CORR
[6]  
Krishnaswami N., A computational lambda calculus for applicative functors
[7]   Sequent Calculus for Intuitionistic Epistemic Logic IEL [J].
Krupski, Vladimir N. ;
Yatmanov, Alexey .
LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2016), 2016, 9537 :187-201
[8]   Applicative programming with effects [J].
Mcbride, Conor ;
Paterson, Ross .
JOURNAL OF FUNCTIONAL PROGRAMMING, 2008, 18 (18) :1-13
[9]   NOTIONS OF COMPUTATION AND MONADS [J].
MOGGI, E .
INFORMATION AND COMPUTATION, 1991, 93 (01) :55-92
[10]  
Nederpelt R, 2014, TYPE THEORY AND FORMAL PROOF: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139567725