Optimal control of heat source in a heat conductivity problem

被引:4
作者
Subasi, M [1 ]
机构
[1] Ataturk Univ, Fen Edebiyat Fak, Matemat Bolumu, TR-25240 Erzurum, Turkey
关键词
inverse heat conductivity; method of projection of gradient;
D O I
10.1080/1055678021000012444
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An optimal control problem governed by the heat source in a heat conductivity problem is presented. An estimate for the weak solution of heat conduction problem is proposed in the space L-2, and the problem is numerically implemented using the method of projection of gradient. Sensible and successful results are obtained on a test problem.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 11 条
[1]  
Amidi O., 1990, CMURITR9017
[2]  
Bourgeois C, 2001, NUMER MATH, V87, P407, DOI 10.1007/s002110000191
[3]  
GOMEZORTEGA J, 1994, THESIS U SEVILLA
[4]  
GOMEZORTEGA J, 1996, CONTROL ENG PRACT, V4, P1669
[5]   Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces [J].
Kuwae, K ;
Machigashira, Y ;
Shioya, T .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (02) :269-316
[6]   Galerkin and weighted Galerkin methods for a forward-backward heat equation [J].
Lu, H .
NUMERISCHE MATHEMATIK, 1997, 75 (03) :339-356
[7]  
OLLERO A, 1991, P IEEE 5 INT C ADV R, P1081
[8]   Whole time-domain approach to the inverse natural convection problem [J].
Prudhomme, M ;
Nguyen, TH .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1997, 32 (02) :169-186
[9]  
Rup K, 1996, HEAT MASS TRANSFER, V31, P323, DOI 10.1007/BF02184045
[10]   An estimate for the solution of a perturbed nonlinear quantum-mechanical problem [J].
Subasi, M .
CHAOS SOLITONS & FRACTALS, 2002, 14 (03) :397-402