Finite p-groups with a minimal non-abelian subgroup of index p (II)

被引:23
作者
An LiJian [1 ]
Li Lili [1 ,2 ]
Qu HaiPeng [1 ]
Zhang QinHai [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Computat Sci, Linfen 041004, Peoples R China
[2] Zhanjiang Normal Univ, Sch Math & Computat Sci, Zhanjiang 524048, Peoples R China
基金
中国国家自然科学基金;
关键词
minimal non-abelian p-groups; A(t)-groups; congruent relation; sub-congruent relation;
D O I
10.1007/s11425-013-4735-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify completely three-generator finite p-groups G such that I broken vertical bar(G) a (c) 1/2 Z(G) and |G'| a (c) 1/2 p (2). This paper is a part of the classification of finite p-groups with a minimal non-abelian subgroup of index p, and solve partly a problem proposed by Berkovich.
引用
收藏
页码:737 / 753
页数:17
相关论文
共 12 条
[1]  
An L J, ARXIV13105503
[2]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[3]  
Berkovich Y, 2008, GROUPS PRIME POWER O
[4]  
Fang X G, ARXIV13105509
[5]  
Hall M, 1964, GROUPS ORDER 21 1 6
[6]  
Qu H P, ARXIV13105496
[7]  
Qu H P, J ALGEBRA APPL UNPUB
[8]   Finite p-groups with a minimal non-abelian subgroup of index p (I) [J].
Qu, Haipeng ;
Yang, Sushan ;
Xu, Mingyao ;
An, Lijian .
JOURNAL OF ALGEBRA, 2012, 358 :178-188
[9]  
Xu M., 1987, INTRO FINITE GROUPS
[10]   Finite p-groups all of whose non-abelian proper subgroups are generated by two elements [J].
Xu, Mingyao ;
An, Lijian ;
Zhang, Qinhai .
JOURNAL OF ALGEBRA, 2008, 319 (09) :3603-3620